Rekcul commited on
Commit
39b28f2
·
1 Parent(s): 6724051

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -135.31 +/- 62.06
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 255.56 +/- 16.83
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5ea85d0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5ea85d160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5ea85d1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5ea85d280>", "_build": "<function ActorCriticPolicy._build at 0x7fb5ea85d310>", "forward": "<function ActorCriticPolicy.forward at 0x7fb5ea85d3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5ea85d430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb5ea85d4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5ea85d550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5ea85d5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5ea85d670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb5ea851f60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651874268.6310358, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3cgzvILqo/rKw/PVTNx77ljM86thg8vAAAAAAAAAAA7TjYvv1DjD/1i9O+E7ImvwONxL4TlGe+AAAAAAAAAACtApy+Lh6SPYeUHr4ZsJq/At5jvW3zqT0AAAAAAAAAANMFbT6Edng/3HEYPn/cJL8iMLW9mNYKvQAAAAAAAAAAZralOhv5oD/dG0e8Bx7avg6hYD1CsZs9AAAAAAAAAAAA1IG7Nou0P4V6zb6Hnpm886iWO/Ysuj0AAAAAAAAAALPyLD15EYU/6guuPVQsDb+erVs79bnYvQAAAAAAAAAATaBbvcLZhT+GKTC+BglFv1q64D3RpB+9AAAAAAAAAAAAN+u9iqIyP/Wi7L1ZND2/oICKvsZBsLsAAAAAAAAAAKbzhT7RpJQ/q87VPlveEL/7OaQ+wKc3PgAAAAAAAAAAM1rcvXCWnj8yjP2+42nevqSJ3j0Gs7o9AAAAAAAAAACtk2U+OIuwPoKlBD6SEma/2XdmPqnSJjwAAAAAAAAAAJq55bo4IZc+y1JPvV5XjL9RXqa9DkqavQAAAAAAAAAAM/E1vMOTeT+GVU+9rYw1v/3XbT09dgW9AAAAAAAAAABD0Ey+u2VHP8IZIL7180q/0ET9vsuWlb4AAAAAAAAAAHoLYb54x8c+ueuuveSHeL8uth++rmPpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw9MrZRnGN8CUhpRSlIwBbJRLa4wBdJRHQJTvkEgW8Ad1fZQoaAZoCWgPQwgEHa1qSctYwJSGlFKUaBVLU2gWR0CU75B+4LCvdX2UKGgGaAloD0MIlBXD1QEQ3L+UhpRSlGgVS3NoFkdAlO+UkB0ZFXV9lChoBmgJaA9DCA+5GW7A3FPAlIaUUpRoFUt9aBZHQJTvn0yxiXp1fZQoaAZoCWgPQwgTgH9KlRJBwJSGlFKUaBVLcmgWR0CU762f029+dX2UKGgGaAloD0MI5iDoaFWVU8CUhpRSlGgVS2doFkdAlO+5TMqz7nV9lChoBmgJaA9DCMWu7e2WLDPAlIaUUpRoFUtQaBZHQJTv0mY0EYB1fZQoaAZoCWgPQwj8U6pE2QJawJSGlFKUaBVLd2gWR0CU8Ar/bTMJdX2UKGgGaAloD0MI9MMI4dFyRsCUhpRSlGgVS4NoFkdAlPAcju8brHV9lChoBmgJaA9DCOblsPuOV0DAlIaUUpRoFUtdaBZHQJTwLzWf9P11fZQoaAZoCWgPQwjWyK60jP9RwJSGlFKUaBVLT2gWR0CU8FEtuk1udX2UKGgGaAloD0MIZ0P+mUHmS8CUhpRSlGgVS09oFkdAlPBi4Bmwq3V9lChoBmgJaA9DCCIYB5eONVLAlIaUUpRoFUt3aBZHQJTwawr1/Uh1fZQoaAZoCWgPQwiPq5FdaXFJwJSGlFKUaBVLhmgWR0CU8HwXZXdTdX2UKGgGaAloD0MITg00n3MxR8CUhpRSlGgVS1NoFkdAlPB5imVJMHV9lChoBmgJaA9DCM4WEFoPT0nAlIaUUpRoFUtaaBZHQJTwfboKUml1fZQoaAZoCWgPQwiG/3QDBQRRwJSGlFKUaBVLVmgWR0CU8I+7UXpGdX2UKGgGaAloD0MIKGIRww6xRcCUhpRSlGgVS1ZoFkdAlPCbzK9wm3V9lChoBmgJaA9DCKCNXDellDrAlIaUUpRoFUtraBZHQJTwpsdkrgB1fZQoaAZoCWgPQwgBTYQNT3VLwJSGlFKUaBVLg2gWR0CU8K/TLGJfdX2UKGgGaAloD0MI9Idmnlx5R8CUhpRSlGgVS5VoFkdAlPC5zkp7TnV9lChoBmgJaA9DCFZhM8AF8TXAlIaUUpRoFUtfaBZHQJTwyG34Kx91fZQoaAZoCWgPQwg7xhUXR0U+wJSGlFKUaBVLg2gWR0CU8MiaRZEEdX2UKGgGaAloD0MIRKSmXUwQUsCUhpRSlGgVS25oFkdAlPEe/QBxP3V9lChoBmgJaA9DCCuKV1nbQVfAlIaUUpRoFUtZaBZHQJTxPXoTwlV1fZQoaAZoCWgPQwjiyAORRRBFwJSGlFKUaBVLSWgWR0CU8U4tYjjadX2UKGgGaAloD0MIJzEIrBxqS8CUhpRSlGgVS3doFkdAlPFb0SRKYnV9lChoBmgJaA9DCPFHUWfuh0/AlIaUUpRoFUthaBZHQJTxbpV0cOt1fZQoaAZoCWgPQwgs1nCRe3ZMwJSGlFKUaBVLfGgWR0CU8Y2SMcZMdX2UKGgGaAloD0MIBFlPrb4IQcCUhpRSlGgVS5BoFkdAlPGQQtjCpHV9lChoBmgJaA9DCPaaHhSUVVfAlIaUUpRoFUt2aBZHQJTxl/tpmEp1fZQoaAZoCWgPQwjK372jxgZFwJSGlFKUaBVLbWgWR0CU8acpsoDxdX2UKGgGaAloD0MIrtaJy/G2UsCUhpRSlGgVS1toFkdAlPG3rhR64XV9lChoBmgJaA9DCFjjbDoCmlfAlIaUUpRoFUuHaBZHQJTx07o0Q9R1fZQoaAZoCWgPQwhuxJPdzDJMwJSGlFKUaBVLdGgWR0CU8d0HQhOhdX2UKGgGaAloD0MIXmQCfo1GVsCUhpRSlGgVS4poFkdAlPHgIppeu3V9lChoBmgJaA9DCEgyq3e4qUfAlIaUUpRoFUtqaBZHQJTx4P+XJHR1fZQoaAZoCWgPQwgCEk2giJFZwJSGlFKUaBVLc2gWR0CU8efDUExJdX2UKGgGaAloD0MIRDaQLjYWWsCUhpRSlGgVS4JoFkdAlPH2ZiNKiHV9lChoBmgJaA9DCIrNx7WhsknAlIaUUpRoFUtNaBZHQJTyJQhwEQp1fZQoaAZoCWgPQwj8jXbc8L1QwJSGlFKUaBVLZmgWR0CU8ivcJtzkdX2UKGgGaAloD0MIL4Zyol2TVsCUhpRSlGgVS2BoFkdAlPI4wEhaDHV9lChoBmgJaA9DCFjH8UOlnT/AlIaUUpRoFUtZaBZHQJTycAXEZR91fZQoaAZoCWgPQwic+GpHcUJWwJSGlFKUaBVLd2gWR0CU8oKuB+WodX2UKGgGaAloD0MILeqT3GGQWcCUhpRSlGgVS2RoFkdAlPKL6ciGFnV9lChoBmgJaA9DCDLmriXkrVbAlIaUUpRoFUtLaBZHQJTyljEvTPV1fZQoaAZoCWgPQwihZkgVxRlOwJSGlFKUaBVLdWgWR0CU8pvalDWtdX2UKGgGaAloD0MITny1ozilQsCUhpRSlGgVS05oFkdAlPKg9vCMxXV9lChoBmgJaA9DCPwcHy3OnFPAlIaUUpRoFUtQaBZHQJTyrHMlkYp1fZQoaAZoCWgPQwiLpUi+EjBLwJSGlFKUaBVLZWgWR0CU8rTlkpZwdX2UKGgGaAloD0MIIlM+BFVjVcCUhpRSlGgVS3xoFkdAlPLRbbDdg3V9lChoBmgJaA9DCEEtBg/TI1DAlIaUUpRoFUtlaBZHQJTyz7VJ+Uh1fZQoaAZoCWgPQwhN9PkoI341wJSGlFKUaBVLg2gWR0CU8vBU70WedX2UKGgGaAloD0MI4bVLGw4YYMCUhpRSlGgVS3VoFkdAlPMB8UmD2HV9lChoBmgJaA9DCEkw1cxadVnAlIaUUpRoFUtxaBZHQJTzDwDvE0l1fZQoaAZoCWgPQwjwT6kSZfNFwJSGlFKUaBVLSGgWR0CU8zaZx7zDdX2UKGgGaAloD0MI02weh8HQXMCUhpRSlGgVS25oFkdAlPNASOBDonV9lChoBmgJaA9DCBO1NLdCmkXAlIaUUpRoFUt2aBZHQJTzTdoFmnR1fZQoaAZoCWgPQwgtJGB0eXNMwJSGlFKUaBVLUWgWR0CU81akAPupdX2UKGgGaAloD0MIIos08Q7eUcCUhpRSlGgVS0poFkdAlPNYuGsV+XV9lChoBmgJaA9DCMueBDbnn1HAlIaUUpRoFUtPaBZHQJTzYcLjPv91fZQoaAZoCWgPQwgUdeYeEiJAwJSGlFKUaBVLZ2gWR0CU83Q0GeMAdX2UKGgGaAloD0MI5/9VR45YVcCUhpRSlGgVS09oFkdAlPN6KtPpIXV9lChoBmgJaA9DCBLeHoSA/E3AlIaUUpRoFUuJaBZHQJTzkU1yeZp1fZQoaAZoCWgPQwg2lUVhF0dLwJSGlFKUaBVLcGgWR0CU86/DLr5ZdX2UKGgGaAloD0MIyqMbYVEtMsCUhpRSlGgVS1FoFkdAlPO7bYbsGHV9lChoBmgJaA9DCF726053PVTAlIaUUpRoFUtiaBZHQJTzx0wJw851fZQoaAZoCWgPQwgplIWvr7VPwJSGlFKUaBVLd2gWR0CU89WT5ftydX2UKGgGaAloD0MIOGdEaW9MQMCUhpRSlGgVS0VoFkdAlPQELc9GJHV9lChoBmgJaA9DCCBe1y/Y007AlIaUUpRoFUtmaBZHQJT0AZ3s5XF1fZQoaAZoCWgPQwj3WztREhFVwJSGlFKUaBVLfWgWR0CU9Aiy6cy4dX2UKGgGaAloD0MIvaYHBaXATMCUhpRSlGgVS25oFkdAlPQjyWiUPnV9lChoBmgJaA9DCFPL1voiYFjAlIaUUpRoFUtXaBZHQJT0KhM8HOd1fZQoaAZoCWgPQwhaETXR519QwJSGlFKUaBVLamgWR0CU9EH7xd6cdX2UKGgGaAloD0MIkwA1tWzvTMCUhpRSlGgVS1FoFkdAlPRFpj+aSnV9lChoBmgJaA9DCIsyG2SSr1bAlIaUUpRoFUtsaBZHQJT0T/95yEN1fZQoaAZoCWgPQwjP9X04SFhVwJSGlFKUaBVLXmgWR0CU9GBK+SKWdX2UKGgGaAloD0MIFK+ytiniTcCUhpRSlGgVS2toFkdAlPRt0NjLCHV9lChoBmgJaA9DCKFns+pzrFLAlIaUUpRoFUtLaBZHQJT0gqkM1CR1fZQoaAZoCWgPQwhkPEolPPlVwJSGlFKUaBVLeGgWR0CU9IZX+2mYdX2UKGgGaAloD0MI/BpJgnDfSsCUhpRSlGgVS1RoFkdAlPSNXPqs2nV9lChoBmgJaA9DCHsQAvIlu1HAlIaUUpRoFUtraBZHQJT0navicXp1fZQoaAZoCWgPQwgAUps4uThTwJSGlFKUaBVLSWgWR0CU9Lw+dK/VdX2UKGgGaAloD0MItTf4wmSoU8CUhpRSlGgVS1NoFkdAlPTRvm5lOHV9lChoBmgJaA9DCDp2UInrikzAlIaUUpRoFUtLaBZHQJT04s8PnSx1fZQoaAZoCWgPQwiVZvM4DJZGwJSGlFKUaBVLgWgWR0CU9PDUVi4KdX2UKGgGaAloD0MIvsCsUKQ3ScCUhpRSlGgVS2RoFkdAlPT6m0mdAnV9lChoBmgJaA9DCJEpH4KqPUDAlIaUUpRoFUtTaBZHQJT1ENQTEit1fZQoaAZoCWgPQwjQfM7drrFFwJSGlFKUaBVLhWgWR0CU9SIz3yqddX2UKGgGaAloD0MIV+pZEMqtUsCUhpRSlGgVS1doFkdAlPUfQjUutnV9lChoBmgJaA9DCJpbIazGDFLAlIaUUpRoFUtXaBZHQJT1OZ3LV4J1fZQoaAZoCWgPQwhMF2L1RyQ8wJSGlFKUaBVLZGgWR0CU9UtZFG5MdX2UKGgGaAloD0MIcvkP6bf4UMCUhpRSlGgVS3poFkdAlPVVy3kPtnV9lChoBmgJaA9DCN/A5EaRpUvAlIaUUpRoFUtKaBZHQJT1WaTfR/p1fZQoaAZoCWgPQwix3xPrVJ1LwJSGlFKUaBVLWmgWR0CU9W6GgzxgdX2UKGgGaAloD0MINLqD2JkgVsCUhpRSlGgVS2BoFkdAlPV2OdXkpHV9lChoBmgJaA9DCOlhaHVyt1bAlIaUUpRoFUtpaBZHQJT1iNHYpUh1fZQoaAZoCWgPQwi6umOxTTpAwJSGlFKUaBVLeWgWR0CU9ZotL+PzdX2UKGgGaAloD0MIG/Sltz9nS8CUhpRSlGgVS1hoFkdAlPW75VOsT3V9lChoBmgJaA9DCOzbSUT4lzXAlIaUUpRoFUtOaBZHQJT10rDqGDd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20, "n_steps": 16384, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.03, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021; root:xnu-7195.141.6~3/RELEASE_X86_64", "Python": "3.8.8", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd38a650d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd38a65160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd38a651f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd38a65280>", "_build": "<function ActorCriticPolicy._build at 0x7fdd38a65310>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd38a653a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd38a65430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd38a654c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd38a65550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd38a655e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd38a65670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdd38a5af60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651874692.7907588, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACA6LtICY26PLUNOeYJWDa5WCk7uEgjuAAAgD8AAIA/QLLPPeF8hrobGzI7XTaNNj3E3jp9yE26AACAPwAAgD8ziQ899mx+urLggDupe+w2SL6rudgUlboAAIA/AACAPzNz3j2PYg66HtzhurM7PzVr1mc7CEextAAAgD8AAIA/TbyhPY8eNLrTR7O7EfKFOPnBPTuOfVM6AACAPwAAgD/A8AM+uH7rubWfKzop2j82vsgTO3PSSrkAAIA/AACAP5qqlbxSuLA4vtg9OheAPTU+Q9E7q9lquQAAgD8AAIA/uig9vnvgxbzKz6S5Ulo/uMKnLj4lTuQ4AACAPwAAgD9zg7Q9hdvnuUDJgjhEZMMyAPYNO+jimbcAAIA/AACAP6ClRT7Dl228+svVO1Rfv7ltEeC94L/rugAAgD8AAIA/msALvcN9S7rxrBo7akdlNajwmzviI1Q0AACAPwAAgD/NP0K+dHzNvJPxjbyfKSa7K/kyPnEfADwAAIA/AACAP1rPvr1Il4+6esnpuuZq+bW9DEE5RqMHOgAAgD8AAIA/ioe/PmSbND9iRAs+9DvbvgysOj5Gow+9AAAAAAAAAACNSxo+ac4vvJJcxTsE9V66Gyydvb9uJLsAAIA/AACAP5pix7wpTFW6SmjtO8pLFbXFiqQ7AO/rswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoBaDh+m4ZECUhpRSlIwBbJRN6AOMAXSUR0CE+pF72L5zdX2UKGgGaAloD0MIrIvbaABDM0CUhpRSlGgVS+RoFkdAhPquUliSaHV9lChoBmgJaA9DCKM6Hcj6+GJAlIaUUpRoFU3oA2gWR0CE/8IE8q4IdX2UKGgGaAloD0MIvi8uVWk3Y0CUhpRSlGgVTegDaBZHQIUBWPRzBAR1fZQoaAZoCWgPQwjbGaa2VEBkQJSGlFKUaBVN6ANoFkdAhQoV9nbqQnV9lChoBmgJaA9DCB/WG7XC/WJAlIaUUpRoFU3oA2gWR0CFOAzRhMJydX2UKGgGaAloD0MI7lwY6UW7XkCUhpRSlGgVTegDaBZHQIU6p8hLXcx1fZQoaAZoCWgPQwhL5e0Ip7hiQJSGlFKUaBVN6ANoFkdAhTu9fb9IgHV9lChoBmgJaA9DCNBjlGfeg2NAlIaUUpRoFU3oA2gWR0CFPG2fkFOgdX2UKGgGaAloD0MISGqhZHIpY0CUhpRSlGgVTegDaBZHQIVdgiA2AG11fZQoaAZoCWgPQwjPvYdLDvdhQJSGlFKUaBVN6ANoFkdAhWU9lmOENHV9lChoBmgJaA9DCKvN/6uOjWNAlIaUUpRoFU3oA2gWR0CFZu+mFajfdX2UKGgGaAloD0MIGqTgKWQjYECUhpRSlGgVTegDaBZHQIVs93ljmS11fZQoaAZoCWgPQwhIjJ5baBhjQJSGlFKUaBVN6ANoFkdAhW5bVJ+UhXV9lChoBmgJaA9DCPNxbaiY5mFAlIaUUpRoFU3oA2gWR0CFb1y+6Ae8dX2UKGgGaAloD0MI41MAjGfQZUCUhpRSlGgVTegDaBZHQIVzGuPmxMZ1fZQoaAZoCWgPQwj7srRTc7xbQJSGlFKUaBVN6ANoFkdAhXW8A7xNI3V9lChoBmgJaA9DCJQzFHc8DGZAlIaUUpRoFU3oA2gWR0CFddq/M4cWdX2UKGgGaAloD0MIZJKRs7AlYkCUhpRSlGgVTegDaBZHQIV7IZ/CqId1fZQoaAZoCWgPQwiIf9jSo+ZiQJSGlFKUaBVN6ANoFkdAhXzpOnEVFnV9lChoBmgJaA9DCKH18GUizmNAlIaUUpRoFU3oA2gWR0CFhh8VHnU2dX2UKGgGaAloD0MI2uGvyRpNQ0CUhpRSlGgVS+poFkdAhYZrOAy2yHV9lChoBmgJaA9DCByastMPqGVAlIaUUpRoFU3oA2gWR0CFtxuuzQeFdX2UKGgGaAloD0MIdGA5QgaBYECUhpRSlGgVTegDaBZHQIW5nqJMxoJ1fZQoaAZoCWgPQwim07oNatpjQJSGlFKUaBVN6ANoFkdAhbqZxaPjn3V9lChoBmgJaA9DCKfOo+L/tWFAlIaUUpRoFU3oA2gWR0CFu0RgZ0jkdX2UKGgGaAloD0MIO6buyi44S0CUhpRSlGgVS+doFkdAhdaQAEMb33V9lChoBmgJaA9DCLdDw2LUk19AlIaUUpRoFU3oA2gWR0CF2vv99+gEdX2UKGgGaAloD0MImbnA5bHCYUCUhpRSlGgVTegDaBZHQIYdYjQiRnx1fZQoaAZoCWgPQwjs+3CQEMleQJSGlFKUaBVN6ANoFkdAhh8McQyylnV9lChoBmgJaA9DCB0hA3n2CGBAlIaUUpRoFU3oA2gWR0CGJEMNtqHodX2UKGgGaAloD0MIwqG3eHiaX0CUhpRSlGgVTegDaBZHQIYmB1/2Cd11fZQoaAZoCWgPQwg3xHjNK6thQJSGlFKUaBVN6ANoFkdAhiksfigkC3V9lChoBmgJaA9DCLvW3qcqC2NAlIaUUpRoFU3oA2gWR0CGK8b4Ju2rdX2UKGgGaAloD0MIRQ2mYXi6YkCUhpRSlGgVTegDaBZHQIYr7brTpgV1fZQoaAZoCWgPQwj5254gscVIQJSGlFKUaBVL/mgWR0CGLv3lCCz1dX2UKGgGaAloD0MIxohEoeV5YkCUhpRSlGgVTegDaBZHQIYwBu/Dcdp1fZQoaAZoCWgPQwi6MNKL2sFkQJSGlFKUaBVN6ANoFkdAhjF57XxvvXV9lChoBmgJaA9DCCj0+pP4vklAlIaUUpRoFUvYaBZHQIY3FPJq7Ad1fZQoaAZoCWgPQwhOJ9nq8kFkQJSGlFKUaBVN6ANoFkdAhjexBmf5DnV9lChoBmgJaA9DCAA8okJ1X2JAlIaUUpRoFU3oA2gWR0CGN/B7eEZjdX2UKGgGaAloD0MIu7n42566RECUhpRSlGgVS+BoFkdAhjw9srNGE3V9lChoBmgJaA9DCAXc8/zppWJAlIaUUpRoFU3oA2gWR0CGYJtj0+TvdX2UKGgGaAloD0MI/KvHfStxZECUhpRSlGgVTegDaBZHQIZkGJ79hql1fZQoaAZoCWgPQwioN6Pmq7BkQJSGlFKUaBVN6ANoFkdAhmTMa0hNd3V9lChoBmgJaA9DCGcMc4I2v2FAlIaUUpRoFU3oA2gWR0CGhTexfOUudX2UKGgGaAloD0MIbmjKTj+uYUCUhpRSlGgVTegDaBZHQIaMBwKjSG91fZQoaAZoCWgPQwhPHhZqzfphQJSGlFKUaBVN6ANoFkdAho1m8M/hVHV9lChoBmgJaA9DCP8FggAZr2NAlIaUUpRoFU3oA2gWR0CGknG2kSEldX2UKGgGaAloD0MIsI9OXfmLY0CUhpRSlGgVTegDaBZHQIaYaCJ40Mx1fZQoaAZoCWgPQwh7LlOTYABkQJSGlFKUaBVN6ANoFkdAhptEORT0hHV9lChoBmgJaA9DCJgW9UluGGNAlIaUUpRoFU3oA2gWR0CGoB7laKUFdX2UKGgGaAloD0MIv9U6cTnmY0CUhpRSlGgVTegDaBZHQIahbtVrAQB1fZQoaAZoCWgPQwhIpG38iTJiQJSGlFKUaBVN6ANoFkdAhqNhIFvAGnV9lChoBmgJaA9DCJf9utOdUzRAlIaUUpRoFUvdaBZHQIaq5vxYq5N1fZQoaAZoCWgPQwiKWMSww3VjQJSGlFKUaBVN6ANoFkdAhqxQlruYyHV9lChoBmgJaA9DCEjeOZShCmRAlIaUUpRoFU3oA2gWR0CGrQAHVwxWdX2UKGgGaAloD0MI83aE04K1XECUhpRSlGgVTegDaBZHQIatSgwoLG91fZQoaAZoCWgPQwh8J2a9GPZlQJSGlFKUaBVN6ANoFkdAhrIMDwH7g3V9lChoBmgJaA9DCLXBiejXoF9AlIaUUpRoFU3oA2gWR0CG23KkEcKgdX2UKGgGaAloD0MIyXISSl99ZUCUhpRSlGgVTegDaBZHQIbd+Yc/+sJ1fZQoaAZoCWgPQwgZda29z9BhQJSGlFKUaBVN6ANoFkdAht530f5k9XV9lChoBmgJaA9DCMK9Mm/VmGNAlIaUUpRoFU3oA2gWR0CG/7d1uBMBdX2UKGgGaAloD0MIzLbT1ogSYECUhpRSlGgVTegDaBZHQIcFs384xUN1fZQoaAZoCWgPQwi0rWadcepjQJSGlFKUaBVN6ANoFkdAhwbVgYxcmnV9lChoBmgJaA9DCLgDdcojimBAlIaUUpRoFU3oA2gWR0CHPxNke6qbdX2UKGgGaAloD0MI2jwOg/lNV0CUhpRSlGgVTegDaBZHQIdCUN6PbPB1fZQoaAZoCWgPQwjggJau4BtkQJSGlFKUaBVN6ANoFkdAh0fBfa6BiHV9lChoBmgJaA9DCO832nHDjGVAlIaUUpRoFU3oA2gWR0CHSTMV1wHadX2UKGgGaAloD0MIkPeqlQm1XUCUhpRSlGgVTegDaBZHQIdLaX+l0o11fZQoaAZoCWgPQwhN1xNdl05iQJSGlFKUaBVN6ANoFkdAh1PkMCtA9nV9lChoBmgJaA9DCKDctu/R82NAlIaUUpRoFU3oA2gWR0CHVYaya/h3dX2UKGgGaAloD0MIRl7WxILgZUCUhpRSlGgVTegDaBZHQIdWV2xIJ7d1fZQoaAZoCWgPQwgW+8vuSbVkQJSGlFKUaBVN6ANoFkdAh1arRrrPdHV9lChoBmgJaA9DCCY5YFeTvGNAlIaUUpRoFU3oA2gWR0CHW9XNke6qdX2UKGgGaAloD0MI1JrmHafwMUCUhpRSlGgVS9ZoFkdAh2JBisny/nV9lChoBmgJaA9DCCdok8MnOWdAlIaUUpRoFU3oA2gWR0CHgUJeE7GOdX2UKGgGaAloD0MI3SVxVkSlZECUhpRSlGgVTegDaBZHQIeEsOwxFiN1fZQoaAZoCWgPQwjSVE/mn7BjQJSGlFKUaBVN6ANoFkdAh4Vc/lhgE3V9lChoBmgJaA9DCNqrj4e+G2NAlIaUUpRoFU3oA2gWR0CHpd4t6HCXdX2UKGgGaAloD0MI9fI7TeZtYUCUhpRSlGgVTegDaBZHQIetXZkCmuV1fZQoaAZoCWgPQwiZ8Ev9vPpiQJSGlFKUaBVN6ANoFkdAh67nkDIRy3V9lChoBmgJaA9DCPQyiuWWXmBAlIaUUpRoFU3oA2gWR0CHuT7JnxrjdX2UKGgGaAloD0MIMh8Q6EwjYkCUhpRSlGgVTegDaBZHQIe7zOE/Spl1fZQoaAZoCWgPQwiLw5lfzbtCQJSGlFKUaBVL1WgWR0CHvtX4CZF5dX2UKGgGaAloD0MI8YPzqWN3YUCUhpRSlGgVTegDaBZHQIe/uukk8ih1fZQoaAZoCWgPQwg5Rx0d17BiQJSGlFKUaBVN6ANoFkdAh8DF/hESd3V9lChoBmgJaA9DCMSY9PdSUCpAlIaUUpRoFUv0aBZHQIfF4zUI9kl1fZQoaAZoCWgPQwjaklUR7lJkQJSGlFKUaBVN6ANoFkdAh8hx0U47zXV9lChoBmgJaA9DCHcU56gj3mNAlIaUUpRoFU3oA2gWR0CHyXpY9xIbdX2UKGgGaAloD0MImDEFaxzXYkCUhpRSlGgVTegDaBZHQIfJ9l05lvt1fZQoaAZoCWgPQwjBVZ5A2MBmQJSGlFKUaBVN6ANoFkdAh8orl/6O53V9lChoBmgJaA9DCKlsWFNZdl5AlIaUUpRoFU3oA2gWR0CHzV4W1twadX2UKGgGaAloD0MIavrsgOs6SkCUhpRSlGgVS85oFkdAh87hBqsU7HV9lChoBmgJaA9DCN+l1CXjFEhAlIaUUpRoFUvPaBZHQIfPtNet0V91fZQoaAZoCWgPQwimQ6fnXXZkQJSGlFKUaBVN6ANoFkdAh9Fp/oaDPHV9lChoBmgJaA9DCA2OkldnymVAlIaUUpRoFU3oA2gWR0CH5ozXSSeRdX2UKGgGaAloD0MI2XbaGhG/ZUCUhpRSlGgVTegDaBZHQIfpF3Ux20R1fZQoaAZoCWgPQwgr24e85WlhQJSGlFKUaBVN6ANoFkdAh+mOYx+KCXV9lChoBmgJaA9DCMlxp3Qw4mJAlIaUUpRoFU3oA2gWR0CICbfShJyydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVPQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjIYvVXNlcnMvcnVhdm1pMS9Eb2N1bWVudHMvY291cnNlcy9yZWluZm9yY2VtZW50IGxlYXJuaW5nL2RlZXAtcmwtY2xhc3MvcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMhi9Vc2Vycy9ydWF2bWkxL0RvY3VtZW50cy9jb3Vyc2VzL3JlaW5mb3JjZW1lbnQgbGVhcm5pbmcvZGVlcC1ybC1jbGFzcy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-10.16-x86_64-i386-64bit Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021; root:xnu-7195.141.6~3/RELEASE_X86_64", "Python": "3.8.8", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b218a432c84e4f39b41441af2175ec3400cb450c4cb0e87bceca42781294918a
3
- size 143908
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba6926227ee8c63ac512728b50845be893b279c47649a0276e5f581a9861cc5a
3
+ size 144088
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5ea85d0d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5ea85d160>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5ea85d1f0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5ea85d280>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb5ea85d310>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb5ea85d3a0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5ea85d430>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb5ea85d4c0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5ea85d550>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5ea85d5e0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5ea85d670>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fb5ea851f60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1048576,
46
  "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651874268.6310358,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,33 +56,33 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3cgzvILqo/rKw/PVTNx77ljM86thg8vAAAAAAAAAAA7TjYvv1DjD/1i9O+E7ImvwONxL4TlGe+AAAAAAAAAACtApy+Lh6SPYeUHr4ZsJq/At5jvW3zqT0AAAAAAAAAANMFbT6Edng/3HEYPn/cJL8iMLW9mNYKvQAAAAAAAAAAZralOhv5oD/dG0e8Bx7avg6hYD1CsZs9AAAAAAAAAAAA1IG7Nou0P4V6zb6Hnpm886iWO/Ysuj0AAAAAAAAAALPyLD15EYU/6guuPVQsDb+erVs79bnYvQAAAAAAAAAATaBbvcLZhT+GKTC+BglFv1q64D3RpB+9AAAAAAAAAAAAN+u9iqIyP/Wi7L1ZND2/oICKvsZBsLsAAAAAAAAAAKbzhT7RpJQ/q87VPlveEL/7OaQ+wKc3PgAAAAAAAAAAM1rcvXCWnj8yjP2+42nevqSJ3j0Gs7o9AAAAAAAAAACtk2U+OIuwPoKlBD6SEma/2XdmPqnSJjwAAAAAAAAAAJq55bo4IZc+y1JPvV5XjL9RXqa9DkqavQAAAAAAAAAAM/E1vMOTeT+GVU+9rYw1v/3XbT09dgW9AAAAAAAAAABD0Ey+u2VHP8IZIL7180q/0ET9vsuWlb4AAAAAAAAAAHoLYb54x8c+ueuuveSHeL8uth++rmPpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.04857599999999995,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw9MrZRnGN8CUhpRSlIwBbJRLa4wBdJRHQJTvkEgW8Ad1fZQoaAZoCWgPQwgEHa1qSctYwJSGlFKUaBVLU2gWR0CU75B+4LCvdX2UKGgGaAloD0MIlBXD1QEQ3L+UhpRSlGgVS3NoFkdAlO+UkB0ZFXV9lChoBmgJaA9DCA+5GW7A3FPAlIaUUpRoFUt9aBZHQJTvn0yxiXp1fZQoaAZoCWgPQwgTgH9KlRJBwJSGlFKUaBVLcmgWR0CU762f029+dX2UKGgGaAloD0MI5iDoaFWVU8CUhpRSlGgVS2doFkdAlO+5TMqz7nV9lChoBmgJaA9DCMWu7e2WLDPAlIaUUpRoFUtQaBZHQJTv0mY0EYB1fZQoaAZoCWgPQwj8U6pE2QJawJSGlFKUaBVLd2gWR0CU8Ar/bTMJdX2UKGgGaAloD0MI9MMI4dFyRsCUhpRSlGgVS4NoFkdAlPAcju8brHV9lChoBmgJaA9DCOblsPuOV0DAlIaUUpRoFUtdaBZHQJTwLzWf9P11fZQoaAZoCWgPQwjWyK60jP9RwJSGlFKUaBVLT2gWR0CU8FEtuk1udX2UKGgGaAloD0MIZ0P+mUHmS8CUhpRSlGgVS09oFkdAlPBi4Bmwq3V9lChoBmgJaA9DCCIYB5eONVLAlIaUUpRoFUt3aBZHQJTwawr1/Uh1fZQoaAZoCWgPQwiPq5FdaXFJwJSGlFKUaBVLhmgWR0CU8HwXZXdTdX2UKGgGaAloD0MITg00n3MxR8CUhpRSlGgVS1NoFkdAlPB5imVJMHV9lChoBmgJaA9DCM4WEFoPT0nAlIaUUpRoFUtaaBZHQJTwfboKUml1fZQoaAZoCWgPQwiG/3QDBQRRwJSGlFKUaBVLVmgWR0CU8I+7UXpGdX2UKGgGaAloD0MIKGIRww6xRcCUhpRSlGgVS1ZoFkdAlPCbzK9wm3V9lChoBmgJaA9DCKCNXDellDrAlIaUUpRoFUtraBZHQJTwpsdkrgB1fZQoaAZoCWgPQwgBTYQNT3VLwJSGlFKUaBVLg2gWR0CU8K/TLGJfdX2UKGgGaAloD0MI9Idmnlx5R8CUhpRSlGgVS5VoFkdAlPC5zkp7TnV9lChoBmgJaA9DCFZhM8AF8TXAlIaUUpRoFUtfaBZHQJTwyG34Kx91fZQoaAZoCWgPQwg7xhUXR0U+wJSGlFKUaBVLg2gWR0CU8MiaRZEEdX2UKGgGaAloD0MIRKSmXUwQUsCUhpRSlGgVS25oFkdAlPEe/QBxP3V9lChoBmgJaA9DCCuKV1nbQVfAlIaUUpRoFUtZaBZHQJTxPXoTwlV1fZQoaAZoCWgPQwjiyAORRRBFwJSGlFKUaBVLSWgWR0CU8U4tYjjadX2UKGgGaAloD0MIJzEIrBxqS8CUhpRSlGgVS3doFkdAlPFb0SRKYnV9lChoBmgJaA9DCPFHUWfuh0/AlIaUUpRoFUthaBZHQJTxbpV0cOt1fZQoaAZoCWgPQwgs1nCRe3ZMwJSGlFKUaBVLfGgWR0CU8Y2SMcZMdX2UKGgGaAloD0MIBFlPrb4IQcCUhpRSlGgVS5BoFkdAlPGQQtjCpHV9lChoBmgJaA9DCPaaHhSUVVfAlIaUUpRoFUt2aBZHQJTxl/tpmEp1fZQoaAZoCWgPQwjK372jxgZFwJSGlFKUaBVLbWgWR0CU8acpsoDxdX2UKGgGaAloD0MIrtaJy/G2UsCUhpRSlGgVS1toFkdAlPG3rhR64XV9lChoBmgJaA9DCFjjbDoCmlfAlIaUUpRoFUuHaBZHQJTx07o0Q9R1fZQoaAZoCWgPQwhuxJPdzDJMwJSGlFKUaBVLdGgWR0CU8d0HQhOhdX2UKGgGaAloD0MIXmQCfo1GVsCUhpRSlGgVS4poFkdAlPHgIppeu3V9lChoBmgJaA9DCEgyq3e4qUfAlIaUUpRoFUtqaBZHQJTx4P+XJHR1fZQoaAZoCWgPQwgCEk2giJFZwJSGlFKUaBVLc2gWR0CU8efDUExJdX2UKGgGaAloD0MIRDaQLjYWWsCUhpRSlGgVS4JoFkdAlPH2ZiNKiHV9lChoBmgJaA9DCIrNx7WhsknAlIaUUpRoFUtNaBZHQJTyJQhwEQp1fZQoaAZoCWgPQwj8jXbc8L1QwJSGlFKUaBVLZmgWR0CU8ivcJtzkdX2UKGgGaAloD0MIL4Zyol2TVsCUhpRSlGgVS2BoFkdAlPI4wEhaDHV9lChoBmgJaA9DCFjH8UOlnT/AlIaUUpRoFUtZaBZHQJTycAXEZR91fZQoaAZoCWgPQwic+GpHcUJWwJSGlFKUaBVLd2gWR0CU8oKuB+WodX2UKGgGaAloD0MILeqT3GGQWcCUhpRSlGgVS2RoFkdAlPKL6ciGFnV9lChoBmgJaA9DCDLmriXkrVbAlIaUUpRoFUtLaBZHQJTyljEvTPV1fZQoaAZoCWgPQwihZkgVxRlOwJSGlFKUaBVLdWgWR0CU8pvalDWtdX2UKGgGaAloD0MITny1ozilQsCUhpRSlGgVS05oFkdAlPKg9vCMxXV9lChoBmgJaA9DCPwcHy3OnFPAlIaUUpRoFUtQaBZHQJTyrHMlkYp1fZQoaAZoCWgPQwiLpUi+EjBLwJSGlFKUaBVLZWgWR0CU8rTlkpZwdX2UKGgGaAloD0MIIlM+BFVjVcCUhpRSlGgVS3xoFkdAlPLRbbDdg3V9lChoBmgJaA9DCEEtBg/TI1DAlIaUUpRoFUtlaBZHQJTyz7VJ+Uh1fZQoaAZoCWgPQwhN9PkoI341wJSGlFKUaBVLg2gWR0CU8vBU70WedX2UKGgGaAloD0MI4bVLGw4YYMCUhpRSlGgVS3VoFkdAlPMB8UmD2HV9lChoBmgJaA9DCEkw1cxadVnAlIaUUpRoFUtxaBZHQJTzDwDvE0l1fZQoaAZoCWgPQwjwT6kSZfNFwJSGlFKUaBVLSGgWR0CU8zaZx7zDdX2UKGgGaAloD0MI02weh8HQXMCUhpRSlGgVS25oFkdAlPNASOBDonV9lChoBmgJaA9DCBO1NLdCmkXAlIaUUpRoFUt2aBZHQJTzTdoFmnR1fZQoaAZoCWgPQwgtJGB0eXNMwJSGlFKUaBVLUWgWR0CU81akAPupdX2UKGgGaAloD0MIIos08Q7eUcCUhpRSlGgVS0poFkdAlPNYuGsV+XV9lChoBmgJaA9DCMueBDbnn1HAlIaUUpRoFUtPaBZHQJTzYcLjPv91fZQoaAZoCWgPQwgUdeYeEiJAwJSGlFKUaBVLZ2gWR0CU83Q0GeMAdX2UKGgGaAloD0MI5/9VR45YVcCUhpRSlGgVS09oFkdAlPN6KtPpIXV9lChoBmgJaA9DCBLeHoSA/E3AlIaUUpRoFUuJaBZHQJTzkU1yeZp1fZQoaAZoCWgPQwg2lUVhF0dLwJSGlFKUaBVLcGgWR0CU86/DLr5ZdX2UKGgGaAloD0MIyqMbYVEtMsCUhpRSlGgVS1FoFkdAlPO7bYbsGHV9lChoBmgJaA9DCF726053PVTAlIaUUpRoFUtiaBZHQJTzx0wJw851fZQoaAZoCWgPQwgplIWvr7VPwJSGlFKUaBVLd2gWR0CU89WT5ftydX2UKGgGaAloD0MIOGdEaW9MQMCUhpRSlGgVS0VoFkdAlPQELc9GJHV9lChoBmgJaA9DCCBe1y/Y007AlIaUUpRoFUtmaBZHQJT0AZ3s5XF1fZQoaAZoCWgPQwj3WztREhFVwJSGlFKUaBVLfWgWR0CU9Aiy6cy4dX2UKGgGaAloD0MIvaYHBaXATMCUhpRSlGgVS25oFkdAlPQjyWiUPnV9lChoBmgJaA9DCFPL1voiYFjAlIaUUpRoFUtXaBZHQJT0KhM8HOd1fZQoaAZoCWgPQwhaETXR519QwJSGlFKUaBVLamgWR0CU9EH7xd6cdX2UKGgGaAloD0MIkwA1tWzvTMCUhpRSlGgVS1FoFkdAlPRFpj+aSnV9lChoBmgJaA9DCIsyG2SSr1bAlIaUUpRoFUtsaBZHQJT0T/95yEN1fZQoaAZoCWgPQwjP9X04SFhVwJSGlFKUaBVLXmgWR0CU9GBK+SKWdX2UKGgGaAloD0MIFK+ytiniTcCUhpRSlGgVS2toFkdAlPRt0NjLCHV9lChoBmgJaA9DCKFns+pzrFLAlIaUUpRoFUtLaBZHQJT0gqkM1CR1fZQoaAZoCWgPQwhkPEolPPlVwJSGlFKUaBVLeGgWR0CU9IZX+2mYdX2UKGgGaAloD0MI/BpJgnDfSsCUhpRSlGgVS1RoFkdAlPSNXPqs2nV9lChoBmgJaA9DCHsQAvIlu1HAlIaUUpRoFUtraBZHQJT0navicXp1fZQoaAZoCWgPQwgAUps4uThTwJSGlFKUaBVLSWgWR0CU9Lw+dK/VdX2UKGgGaAloD0MItTf4wmSoU8CUhpRSlGgVS1NoFkdAlPTRvm5lOHV9lChoBmgJaA9DCDp2UInrikzAlIaUUpRoFUtLaBZHQJT04s8PnSx1fZQoaAZoCWgPQwiVZvM4DJZGwJSGlFKUaBVLgWgWR0CU9PDUVi4KdX2UKGgGaAloD0MIvsCsUKQ3ScCUhpRSlGgVS2RoFkdAlPT6m0mdAnV9lChoBmgJaA9DCJEpH4KqPUDAlIaUUpRoFUtTaBZHQJT1ENQTEit1fZQoaAZoCWgPQwjQfM7drrFFwJSGlFKUaBVLhWgWR0CU9SIz3yqddX2UKGgGaAloD0MIV+pZEMqtUsCUhpRSlGgVS1doFkdAlPUfQjUutnV9lChoBmgJaA9DCJpbIazGDFLAlIaUUpRoFUtXaBZHQJT1OZ3LV4J1fZQoaAZoCWgPQwhMF2L1RyQ8wJSGlFKUaBVLZGgWR0CU9UtZFG5MdX2UKGgGaAloD0MIcvkP6bf4UMCUhpRSlGgVS3poFkdAlPVVy3kPtnV9lChoBmgJaA9DCN/A5EaRpUvAlIaUUpRoFUtKaBZHQJT1WaTfR/p1fZQoaAZoCWgPQwix3xPrVJ1LwJSGlFKUaBVLWmgWR0CU9W6GgzxgdX2UKGgGaAloD0MINLqD2JkgVsCUhpRSlGgVS2BoFkdAlPV2OdXkpHV9lChoBmgJaA9DCOlhaHVyt1bAlIaUUpRoFUtpaBZHQJT1iNHYpUh1fZQoaAZoCWgPQwi6umOxTTpAwJSGlFKUaBVLeWgWR0CU9ZotL+PzdX2UKGgGaAloD0MIG/Sltz9nS8CUhpRSlGgVS1hoFkdAlPW75VOsT3V9lChoBmgJaA9DCOzbSUT4lzXAlIaUUpRoFUtOaBZHQJT10rDqGDd1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 20,
79
- "n_steps": 16384,
80
- "gamma": 0.995,
81
  "gae_lambda": 0.98,
82
- "ent_coef": 0.03,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
- "batch_size": 128,
86
  "n_epochs": 5,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd38a650d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd38a65160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd38a651f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd38a65280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdd38a65310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdd38a653a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd38a65430>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdd38a654c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd38a65550>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd38a655e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd38a65670>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fdd38a5af60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
  "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651874692.7907588,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACA6LtICY26PLUNOeYJWDa5WCk7uEgjuAAAgD8AAIA/QLLPPeF8hrobGzI7XTaNNj3E3jp9yE26AACAPwAAgD8ziQ899mx+urLggDupe+w2SL6rudgUlboAAIA/AACAPzNz3j2PYg66HtzhurM7PzVr1mc7CEextAAAgD8AAIA/TbyhPY8eNLrTR7O7EfKFOPnBPTuOfVM6AACAPwAAgD/A8AM+uH7rubWfKzop2j82vsgTO3PSSrkAAIA/AACAP5qqlbxSuLA4vtg9OheAPTU+Q9E7q9lquQAAgD8AAIA/uig9vnvgxbzKz6S5Ulo/uMKnLj4lTuQ4AACAPwAAgD9zg7Q9hdvnuUDJgjhEZMMyAPYNO+jimbcAAIA/AACAP6ClRT7Dl228+svVO1Rfv7ltEeC94L/rugAAgD8AAIA/msALvcN9S7rxrBo7akdlNajwmzviI1Q0AACAPwAAgD/NP0K+dHzNvJPxjbyfKSa7K/kyPnEfADwAAIA/AACAP1rPvr1Il4+6esnpuuZq+bW9DEE5RqMHOgAAgD8AAIA/ioe/PmSbND9iRAs+9DvbvgysOj5Gow+9AAAAAAAAAACNSxo+ac4vvJJcxTsE9V66Gyydvb9uJLsAAIA/AACAP5pix7wpTFW6SmjtO8pLFbXFiqQ7AO/rswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoBaDh+m4ZECUhpRSlIwBbJRN6AOMAXSUR0CE+pF72L5zdX2UKGgGaAloD0MIrIvbaABDM0CUhpRSlGgVS+RoFkdAhPquUliSaHV9lChoBmgJaA9DCKM6Hcj6+GJAlIaUUpRoFU3oA2gWR0CE/8IE8q4IdX2UKGgGaAloD0MIvi8uVWk3Y0CUhpRSlGgVTegDaBZHQIUBWPRzBAR1fZQoaAZoCWgPQwjbGaa2VEBkQJSGlFKUaBVN6ANoFkdAhQoV9nbqQnV9lChoBmgJaA9DCB/WG7XC/WJAlIaUUpRoFU3oA2gWR0CFOAzRhMJydX2UKGgGaAloD0MI7lwY6UW7XkCUhpRSlGgVTegDaBZHQIU6p8hLXcx1fZQoaAZoCWgPQwhL5e0Ip7hiQJSGlFKUaBVN6ANoFkdAhTu9fb9IgHV9lChoBmgJaA9DCNBjlGfeg2NAlIaUUpRoFU3oA2gWR0CFPG2fkFOgdX2UKGgGaAloD0MISGqhZHIpY0CUhpRSlGgVTegDaBZHQIVdgiA2AG11fZQoaAZoCWgPQwjPvYdLDvdhQJSGlFKUaBVN6ANoFkdAhWU9lmOENHV9lChoBmgJaA9DCKvN/6uOjWNAlIaUUpRoFU3oA2gWR0CFZu+mFajfdX2UKGgGaAloD0MIGqTgKWQjYECUhpRSlGgVTegDaBZHQIVs93ljmS11fZQoaAZoCWgPQwhIjJ5baBhjQJSGlFKUaBVN6ANoFkdAhW5bVJ+UhXV9lChoBmgJaA9DCPNxbaiY5mFAlIaUUpRoFU3oA2gWR0CFb1y+6Ae8dX2UKGgGaAloD0MI41MAjGfQZUCUhpRSlGgVTegDaBZHQIVzGuPmxMZ1fZQoaAZoCWgPQwj7srRTc7xbQJSGlFKUaBVN6ANoFkdAhXW8A7xNI3V9lChoBmgJaA9DCJQzFHc8DGZAlIaUUpRoFU3oA2gWR0CFddq/M4cWdX2UKGgGaAloD0MIZJKRs7AlYkCUhpRSlGgVTegDaBZHQIV7IZ/CqId1fZQoaAZoCWgPQwiIf9jSo+ZiQJSGlFKUaBVN6ANoFkdAhXzpOnEVFnV9lChoBmgJaA9DCKH18GUizmNAlIaUUpRoFU3oA2gWR0CFhh8VHnU2dX2UKGgGaAloD0MI2uGvyRpNQ0CUhpRSlGgVS+poFkdAhYZrOAy2yHV9lChoBmgJaA9DCByastMPqGVAlIaUUpRoFU3oA2gWR0CFtxuuzQeFdX2UKGgGaAloD0MIdGA5QgaBYECUhpRSlGgVTegDaBZHQIW5nqJMxoJ1fZQoaAZoCWgPQwim07oNatpjQJSGlFKUaBVN6ANoFkdAhbqZxaPjn3V9lChoBmgJaA9DCKfOo+L/tWFAlIaUUpRoFU3oA2gWR0CFu0RgZ0jkdX2UKGgGaAloD0MIO6buyi44S0CUhpRSlGgVS+doFkdAhdaQAEMb33V9lChoBmgJaA9DCLdDw2LUk19AlIaUUpRoFU3oA2gWR0CF2vv99+gEdX2UKGgGaAloD0MImbnA5bHCYUCUhpRSlGgVTegDaBZHQIYdYjQiRnx1fZQoaAZoCWgPQwjs+3CQEMleQJSGlFKUaBVN6ANoFkdAhh8McQyylnV9lChoBmgJaA9DCB0hA3n2CGBAlIaUUpRoFU3oA2gWR0CGJEMNtqHodX2UKGgGaAloD0MIwqG3eHiaX0CUhpRSlGgVTegDaBZHQIYmB1/2Cd11fZQoaAZoCWgPQwg3xHjNK6thQJSGlFKUaBVN6ANoFkdAhiksfigkC3V9lChoBmgJaA9DCLvW3qcqC2NAlIaUUpRoFU3oA2gWR0CGK8b4Ju2rdX2UKGgGaAloD0MIRQ2mYXi6YkCUhpRSlGgVTegDaBZHQIYr7brTpgV1fZQoaAZoCWgPQwj5254gscVIQJSGlFKUaBVL/mgWR0CGLv3lCCz1dX2UKGgGaAloD0MIxohEoeV5YkCUhpRSlGgVTegDaBZHQIYwBu/Dcdp1fZQoaAZoCWgPQwi6MNKL2sFkQJSGlFKUaBVN6ANoFkdAhjF57XxvvXV9lChoBmgJaA9DCCj0+pP4vklAlIaUUpRoFUvYaBZHQIY3FPJq7Ad1fZQoaAZoCWgPQwhOJ9nq8kFkQJSGlFKUaBVN6ANoFkdAhjexBmf5DnV9lChoBmgJaA9DCAA8okJ1X2JAlIaUUpRoFU3oA2gWR0CGN/B7eEZjdX2UKGgGaAloD0MIu7n42566RECUhpRSlGgVS+BoFkdAhjw9srNGE3V9lChoBmgJaA9DCAXc8/zppWJAlIaUUpRoFU3oA2gWR0CGYJtj0+TvdX2UKGgGaAloD0MI/KvHfStxZECUhpRSlGgVTegDaBZHQIZkGJ79hql1fZQoaAZoCWgPQwioN6Pmq7BkQJSGlFKUaBVN6ANoFkdAhmTMa0hNd3V9lChoBmgJaA9DCGcMc4I2v2FAlIaUUpRoFU3oA2gWR0CGhTexfOUudX2UKGgGaAloD0MIbmjKTj+uYUCUhpRSlGgVTegDaBZHQIaMBwKjSG91fZQoaAZoCWgPQwhPHhZqzfphQJSGlFKUaBVN6ANoFkdAho1m8M/hVHV9lChoBmgJaA9DCP8FggAZr2NAlIaUUpRoFU3oA2gWR0CGknG2kSEldX2UKGgGaAloD0MIsI9OXfmLY0CUhpRSlGgVTegDaBZHQIaYaCJ40Mx1fZQoaAZoCWgPQwh7LlOTYABkQJSGlFKUaBVN6ANoFkdAhptEORT0hHV9lChoBmgJaA9DCJgW9UluGGNAlIaUUpRoFU3oA2gWR0CGoB7laKUFdX2UKGgGaAloD0MIv9U6cTnmY0CUhpRSlGgVTegDaBZHQIahbtVrAQB1fZQoaAZoCWgPQwhIpG38iTJiQJSGlFKUaBVN6ANoFkdAhqNhIFvAGnV9lChoBmgJaA9DCJf9utOdUzRAlIaUUpRoFUvdaBZHQIaq5vxYq5N1fZQoaAZoCWgPQwiKWMSww3VjQJSGlFKUaBVN6ANoFkdAhqxQlruYyHV9lChoBmgJaA9DCEjeOZShCmRAlIaUUpRoFU3oA2gWR0CGrQAHVwxWdX2UKGgGaAloD0MI83aE04K1XECUhpRSlGgVTegDaBZHQIatSgwoLG91fZQoaAZoCWgPQwh8J2a9GPZlQJSGlFKUaBVN6ANoFkdAhrIMDwH7g3V9lChoBmgJaA9DCLXBiejXoF9AlIaUUpRoFU3oA2gWR0CG23KkEcKgdX2UKGgGaAloD0MIyXISSl99ZUCUhpRSlGgVTegDaBZHQIbd+Yc/+sJ1fZQoaAZoCWgPQwgZda29z9BhQJSGlFKUaBVN6ANoFkdAht530f5k9XV9lChoBmgJaA9DCMK9Mm/VmGNAlIaUUpRoFU3oA2gWR0CG/7d1uBMBdX2UKGgGaAloD0MIzLbT1ogSYECUhpRSlGgVTegDaBZHQIcFs384xUN1fZQoaAZoCWgPQwi0rWadcepjQJSGlFKUaBVN6ANoFkdAhwbVgYxcmnV9lChoBmgJaA9DCLgDdcojimBAlIaUUpRoFU3oA2gWR0CHPxNke6qbdX2UKGgGaAloD0MI2jwOg/lNV0CUhpRSlGgVTegDaBZHQIdCUN6PbPB1fZQoaAZoCWgPQwjggJau4BtkQJSGlFKUaBVN6ANoFkdAh0fBfa6BiHV9lChoBmgJaA9DCO832nHDjGVAlIaUUpRoFU3oA2gWR0CHSTMV1wHadX2UKGgGaAloD0MIkPeqlQm1XUCUhpRSlGgVTegDaBZHQIdLaX+l0o11fZQoaAZoCWgPQwhN1xNdl05iQJSGlFKUaBVN6ANoFkdAh1PkMCtA9nV9lChoBmgJaA9DCKDctu/R82NAlIaUUpRoFU3oA2gWR0CHVYaya/h3dX2UKGgGaAloD0MIRl7WxILgZUCUhpRSlGgVTegDaBZHQIdWV2xIJ7d1fZQoaAZoCWgPQwgW+8vuSbVkQJSGlFKUaBVN6ANoFkdAh1arRrrPdHV9lChoBmgJaA9DCCY5YFeTvGNAlIaUUpRoFU3oA2gWR0CHW9XNke6qdX2UKGgGaAloD0MI1JrmHafwMUCUhpRSlGgVS9ZoFkdAh2JBisny/nV9lChoBmgJaA9DCCdok8MnOWdAlIaUUpRoFU3oA2gWR0CHgUJeE7GOdX2UKGgGaAloD0MI3SVxVkSlZECUhpRSlGgVTegDaBZHQIeEsOwxFiN1fZQoaAZoCWgPQwjSVE/mn7BjQJSGlFKUaBVN6ANoFkdAh4Vc/lhgE3V9lChoBmgJaA9DCNqrj4e+G2NAlIaUUpRoFU3oA2gWR0CHpd4t6HCXdX2UKGgGaAloD0MI9fI7TeZtYUCUhpRSlGgVTegDaBZHQIetXZkCmuV1fZQoaAZoCWgPQwiZ8Ev9vPpiQJSGlFKUaBVN6ANoFkdAh67nkDIRy3V9lChoBmgJaA9DCPQyiuWWXmBAlIaUUpRoFU3oA2gWR0CHuT7JnxrjdX2UKGgGaAloD0MIMh8Q6EwjYkCUhpRSlGgVTegDaBZHQIe7zOE/Spl1fZQoaAZoCWgPQwiLw5lfzbtCQJSGlFKUaBVL1WgWR0CHvtX4CZF5dX2UKGgGaAloD0MI8YPzqWN3YUCUhpRSlGgVTegDaBZHQIe/uukk8ih1fZQoaAZoCWgPQwg5Rx0d17BiQJSGlFKUaBVN6ANoFkdAh8DF/hESd3V9lChoBmgJaA9DCMSY9PdSUCpAlIaUUpRoFUv0aBZHQIfF4zUI9kl1fZQoaAZoCWgPQwjaklUR7lJkQJSGlFKUaBVN6ANoFkdAh8hx0U47zXV9lChoBmgJaA9DCHcU56gj3mNAlIaUUpRoFU3oA2gWR0CHyXpY9xIbdX2UKGgGaAloD0MImDEFaxzXYkCUhpRSlGgVTegDaBZHQIfJ9l05lvt1fZQoaAZoCWgPQwjBVZ5A2MBmQJSGlFKUaBVN6ANoFkdAh8orl/6O53V9lChoBmgJaA9DCKlsWFNZdl5AlIaUUpRoFU3oA2gWR0CHzV4W1twadX2UKGgGaAloD0MIavrsgOs6SkCUhpRSlGgVS85oFkdAh87hBqsU7HV9lChoBmgJaA9DCN+l1CXjFEhAlIaUUpRoFUvPaBZHQIfPtNet0V91fZQoaAZoCWgPQwimQ6fnXXZkQJSGlFKUaBVN6ANoFkdAh9Fp/oaDPHV9lChoBmgJaA9DCA2OkldnymVAlIaUUpRoFU3oA2gWR0CH5ozXSSeRdX2UKGgGaAloD0MI2XbaGhG/ZUCUhpRSlGgVTegDaBZHQIfpF3Ux20R1fZQoaAZoCWgPQwgr24e85WlhQJSGlFKUaBVN6ANoFkdAh+mOYx+KCXV9lChoBmgJaA9DCMlxp3Qw4mJAlIaUUpRoFU3oA2gWR0CICbfShJyydWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 155,
79
+ "n_steps": 2048,
80
+ "gamma": 0.998,
81
  "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
  "n_epochs": 5,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b2465b8a4779bfded8a1d51565010dc9b5bcd3e84b6991f43c2cce2e8005a932
3
- size 84573
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8b53eb412d320d8d590b4ad3a9490c2e65ef6d011ca580999e4a452cd72d981
3
+ size 84637
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:efa6f9b883f9e02e68cb994e7a4799c47f4c40567bea843e17501b67b1d02379
3
  size 43073
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f32d28cc754ad8b9c146389a472fc1da8261ae40cf3385fabe1d995a2a0c5606
3
  size 43073
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c25c77f3d5b9c6493ffa41174cf5d24a43a5f43c8dd9ec0f101e9efdb46b7287
3
- size 446355
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2335fa7023752ade7dc9f09254b7169f4e7d7185109ec61770c2257a7f79b1a7
3
+ size 340258
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -135.30500477607129, "std_reward": 62.06158068699706, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T01:02:50.652763"}
 
1
+ {"mean_reward": 255.5624212051226, "std_reward": 16.828095359850167, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T01:18:51.550328"}