Upload transformerdecoder.py
Browse files- transformerdecoder.py +248 -0
transformerdecoder.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import math
|
| 6 |
+
from transformers import AutoTokenizer, PreTrainedModel, PretrainedConfig
|
| 7 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 8 |
+
|
| 9 |
+
import torchvision
|
| 10 |
+
from torch.utils.data import Dataset, DataLoader
|
| 11 |
+
from datasets import load_dataset_builder
|
| 12 |
+
from datasets import load_dataset
|
| 13 |
+
from transformers import DataCollatorForLanguageModeling
|
| 14 |
+
from transformers import DataCollatorWithPadding, Trainer, TrainingArguments
|
| 15 |
+
from torch.optim import AdamW
|
| 16 |
+
from trl import SFTTrainer, SFTConfig
|
| 17 |
+
from transformers import TrainingArguments, Trainer
|
| 18 |
+
|
| 19 |
+
pretrain_data = load_dataset("Salesforce/wikitext", "wikitext-103-v1", split="train") # ["text"] contains the data
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
|
| 21 |
+
vocab_size = len(tokenizer)
|
| 22 |
+
if tokenizer.pad_token is None:
|
| 23 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class PositionalEncoding(nn.Module):
|
| 29 |
+
def __init__(self, d_model):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.pos_enc = nn.Sequential(
|
| 32 |
+
nn.Linear(1, d_model*4),
|
| 33 |
+
nn.Tanh(),
|
| 34 |
+
nn.Linear(d_model*4, d_model)
|
| 35 |
+
)
|
| 36 |
+
def forward(self, seq_len, device):
|
| 37 |
+
pos = torch.arange(seq_len, device=device, dtype=torch.float32).unsqueeze(-1) # (seq_len, 1)
|
| 38 |
+
pe = self.pos_enc(pos) # (seq_len, d_model)
|
| 39 |
+
return pe.unsqueeze(0) # (1, seq_len, d_model)
|
| 40 |
+
|
| 41 |
+
class AugmentedPositionGPTConfig(PretrainedConfig):
|
| 42 |
+
model_type = "AugmentedPositionGPT"
|
| 43 |
+
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
vocab_size=vocab_size,
|
| 47 |
+
d_model=128,
|
| 48 |
+
num_heads=2,
|
| 49 |
+
num_layers=1,
|
| 50 |
+
max_position_embeddings=512,
|
| 51 |
+
**kwargs,
|
| 52 |
+
):
|
| 53 |
+
super().__init__(**kwargs)
|
| 54 |
+
self.vocab_size = vocab_size
|
| 55 |
+
self.d_model = d_model
|
| 56 |
+
self.num_heads = num_heads
|
| 57 |
+
self.num_layers = num_layers
|
| 58 |
+
self.max_position_embeddings = max_position_embeddings
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class AugmentedPositionGPTBlock(nn.Module):
|
| 66 |
+
def __init__(self, d_model, num_heads):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.d_model = d_model
|
| 69 |
+
#self.output_embedding = nn.Embedding(vocab_size, d_model)
|
| 70 |
+
self.multiheadattention = nn.MultiheadAttention(d_model, num_heads, batch_first=True)
|
| 71 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 72 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 73 |
+
self.ffn1 = nn.Linear(d_model, 4*d_model)
|
| 74 |
+
self.ffn2 = nn.Linear(d_model*4, d_model)
|
| 75 |
+
#self.linear = nn.Linear(d_model, vocab_size)
|
| 76 |
+
def forward(self, x, causal_mask=None):
|
| 77 |
+
residual = x
|
| 78 |
+
normx = self.norm1(x)
|
| 79 |
+
attn_out, _ = self.multiheadattention(normx, normx, normx, attn_mask=causal_mask) # Attention(Q, K, V) = softmax(Q @ K.T / sqrt(d_k) + mask) @ V
|
| 80 |
+
# output: (batch, seq_len, d_model)
|
| 81 |
+
x = residual + attn_out
|
| 82 |
+
residual2 = x
|
| 83 |
+
j = self.ffn1(self.norm2(x)) # takes in: (batch, seq_len, d_model)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# outputs: (batch, seq_len, d_model*4)
|
| 87 |
+
h = self.ffn2(F.relu(j)) # takes in: (batch, seq_len, d_model*4)
|
| 88 |
+
x = residual2 + h
|
| 89 |
+
# outputs: (batch, seq_len, d_model)
|
| 90 |
+
|
| 91 |
+
return x
|
| 92 |
+
class AugmentedPositionGPT(PreTrainedModel):
|
| 93 |
+
config_class = AugmentedPositionGPTConfig
|
| 94 |
+
|
| 95 |
+
def __init__(self, config):
|
| 96 |
+
super().__init__(config)
|
| 97 |
+
self.vocab_size = config.vocab_size
|
| 98 |
+
self.d_model = config.d_model
|
| 99 |
+
self.num_heads = config.num_heads
|
| 100 |
+
self.num_layers = config.num_layers
|
| 101 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 102 |
+
self.output_embedding = nn.Embedding(self.vocab_size, self.d_model)
|
| 103 |
+
self.blocks = nn.ModuleList(
|
| 104 |
+
[AugmentedPositionGPTBlock(self.d_model, self.num_heads) for _ in range(self.num_layers)]
|
| 105 |
+
)
|
| 106 |
+
self.ln_f = nn.LayerNorm(self.d_model)
|
| 107 |
+
self.register_buffer(
|
| 108 |
+
"position_ids",
|
| 109 |
+
torch.arange(self.max_position_embeddings).unsqueeze(0), # (1, seq_len)
|
| 110 |
+
persistent=False,
|
| 111 |
+
)
|
| 112 |
+
self.post_init()
|
| 113 |
+
|
| 114 |
+
def causal_mask(self, seq_len, device):
|
| 115 |
+
# (seq_len, seq_len)
|
| 116 |
+
causal_mask = nn.Transformer.generate_square_subsequent_mask(seq_len, device=device)
|
| 117 |
+
return causal_mask
|
| 118 |
+
|
| 119 |
+
def positional_encoding(self, seq_len, device):
|
| 120 |
+
d_model = self.d_model
|
| 121 |
+
# EVEN: PE(pos, 2i) = sin(pos/10000^(2i/d_model))
|
| 122 |
+
# ODD: PE(pos, 2i+1) = cos(pos/10000^(2i/dmodel))
|
| 123 |
+
a = 10000
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
i = torch.arange(0, d_model, 2, device=device, dtype=torch.float32) # (d_model/2)
|
| 127 |
+
div_term = a ** (i / d_model) # (d_model/2)
|
| 128 |
+
position = torch.arange(seq_len, device=device, dtype=torch.float32).unsqueeze(1) # (seq_len, 1)
|
| 129 |
+
angles = position / div_term # (seq_len, d_model/2)
|
| 130 |
+
pe = torch.zeros(seq_len, d_model, device=device, dtype=torch.float32) # (seq_len, d_model)
|
| 131 |
+
pe[:, 0::2] = torch.sin(angles)
|
| 132 |
+
pe[:, 1::2] = torch.cos(angles)
|
| 133 |
+
pe = pe.unsqueeze(0)
|
| 134 |
+
# shape: (1, seq_len, d_model)
|
| 135 |
+
return pe
|
| 136 |
+
|
| 137 |
+
def forward(
|
| 138 |
+
self,
|
| 139 |
+
input_ids=None,
|
| 140 |
+
attention_mask=None,
|
| 141 |
+
input_embeds=None,
|
| 142 |
+
output_hidden_states=False,
|
| 143 |
+
return_dict=True
|
| 144 |
+
):
|
| 145 |
+
if input_ids is not None and input_embeds is not None:
|
| 146 |
+
raise ValueError("you cant specify both input_ids and input_embeds")
|
| 147 |
+
if input_embeds is None:
|
| 148 |
+
#max_id = input_ids.max().item()
|
| 149 |
+
#min_id = input_ids.min().item()
|
| 150 |
+
#if max_id >= self.vocab_size or min_id < 0:
|
| 151 |
+
#raise RuntimeError(
|
| 152 |
+
#f"Bad token id: min={min_id}, max={max_id}, "
|
| 153 |
+
#f"embedding vocab_size={self.vocab_size}"
|
| 154 |
+
#)
|
| 155 |
+
input_embeds = self.output_embedding(input_ids) # (batch, seq_len, d_model)
|
| 156 |
+
batch, seq_len, _ = input_embeds.shape
|
| 157 |
+
device = input_embeds.device
|
| 158 |
+
# output embeddings and postional encoding
|
| 159 |
+
x = self.output_embedding(input_ids) # (batch, seq_len, d_model)
|
| 160 |
+
pe = self.positional_encoding(seq_len, device=device) # (1, seq_len, d_model)
|
| 161 |
+
x = x + pe # (batch, seq_len, d_model)
|
| 162 |
+
causal_mask = self.causal_mask(seq_len, device)
|
| 163 |
+
all_hidden_states = [] if output_hidden_states else None
|
| 164 |
+
for block in self.blocks:
|
| 165 |
+
if output_hidden_states:
|
| 166 |
+
all_hidden_states.append(x)
|
| 167 |
+
x = block(x, causal_mask=causal_mask)
|
| 168 |
+
x = self.ln_f(x)
|
| 169 |
+
if not return_dict:
|
| 170 |
+
return (x, all_hidden_states)
|
| 171 |
+
|
| 172 |
+
return {"last_hidden_state": x, "hidden_states": all_hidden_states}
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class AugmentedPositionGPTForCausalLM(PreTrainedModel):
|
| 176 |
+
config_class = AugmentedPositionGPTConfig
|
| 177 |
+
|
| 178 |
+
def __init__(self, config):
|
| 179 |
+
super().__init__(config)
|
| 180 |
+
self.transformerdecoder = AugmentedPositionGPT(config)
|
| 181 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
| 182 |
+
|
| 183 |
+
self.lm_head.weight = self.transformerdecoder.output_embedding.weight
|
| 184 |
+
self._dynamic_tied_weights_keys = { # make sure to tell huggingface everything you do or else it will explode
|
| 185 |
+
"lm_head.weight": "transformerdecoder.output_embedding.weight"
|
| 186 |
+
}
|
| 187 |
+
self.post_init()
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def forward(self, input_ids=None, attention_mask=None, input_embeds=None, labels=None, output_hidden_states=False, return_dict=True):
|
| 192 |
+
outputs= self.transformerdecoder(
|
| 193 |
+
input_ids=input_ids,
|
| 194 |
+
attention_mask=attention_mask,
|
| 195 |
+
input_embeds = input_embeds,
|
| 196 |
+
output_hidden_states=output_hidden_states,
|
| 197 |
+
return_dict=True
|
| 198 |
+
)
|
| 199 |
+
hidden_states = outputs["last_hidden_state"] # (batch, seq_len, d_model)
|
| 200 |
+
logits = self.lm_head(hidden_states) # (batch, seq_len, vocab_size)
|
| 201 |
+
loss = None
|
| 202 |
+
if labels is not None:
|
| 203 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 204 |
+
loss = loss_fct(
|
| 205 |
+
logits.view(-1, logits.size(-1)),
|
| 206 |
+
labels.view(-1)
|
| 207 |
+
)
|
| 208 |
+
if not return_dict:
|
| 209 |
+
output = (logits,)
|
| 210 |
+
if output_hidden_states:
|
| 211 |
+
output += (outputs["hidden_states"],)
|
| 212 |
+
return ((loss,) + output) if loss is not None else output
|
| 213 |
+
return CausalLMOutputWithCrossAttentions(
|
| 214 |
+
loss=loss,
|
| 215 |
+
logits=logits,
|
| 216 |
+
hidden_states=outputs["hidden_states"],
|
| 217 |
+
attentions=None,
|
| 218 |
+
cross_attentions=None
|
| 219 |
+
)
|
| 220 |
+
config = AugmentedPositionGPTConfig(vocab_size=vocab_size)
|
| 221 |
+
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 222 |
+
model = AugmentedPositionGPTForCausalLM(config)
|
| 223 |
+
def tokenize(examples):
|
| 224 |
+
return tokenizer(examples["text"], truncation=True, max_length=512)
|
| 225 |
+
pretrain_data_tok = pretrain_data.map(
|
| 226 |
+
tokenize,
|
| 227 |
+
batched=True,
|
| 228 |
+
remove_columns=["text"], # remove raw text so Trainer doesn't pass it
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
training_args = TrainingArguments(
|
| 232 |
+
output_dir = "AugmentedGPT/results",
|
| 233 |
+
num_train_epochs=1,
|
| 234 |
+
per_device_eval_batch_size=1,
|
| 235 |
+
remove_unused_columns=False,
|
| 236 |
+
gradient_accumulation_steps=8,
|
| 237 |
+
fp16=True,
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
trainer = Trainer(
|
| 243 |
+
model=model,
|
| 244 |
+
args=training_args,
|
| 245 |
+
train_dataset=pretrain_data_tok,
|
| 246 |
+
data_collator=collator,
|
| 247 |
+
)
|
| 248 |
+
trainer.train()
|