|
from dac.nn.quantize import ResidualVectorQuantize |
|
from torch import nn |
|
from modules.wavenet import WN |
|
import torch |
|
import torchaudio |
|
import torchaudio.functional as audio_F |
|
import numpy as np |
|
from .alias_free_torch import * |
|
from torch.nn.utils import weight_norm |
|
from torch import nn, sin, pow |
|
from einops.layers.torch import Rearrange |
|
from dac.model.encodec import SConv1d |
|
|
|
def init_weights(m): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def WNConv1d(*args, **kwargs): |
|
return weight_norm(nn.Conv1d(*args, **kwargs)) |
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs): |
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) |
|
|
|
class SnakeBeta(nn.Module): |
|
""" |
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components |
|
Shape: |
|
- Input: (B, C, T) |
|
- Output: (B, C, T), same shape as the input |
|
Parameters: |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
References: |
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: |
|
https://arxiv.org/abs/2006.08195 |
|
Examples: |
|
>>> a1 = snakebeta(256) |
|
>>> x = torch.randn(256) |
|
>>> x = a1(x) |
|
""" |
|
|
|
def __init__( |
|
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False |
|
): |
|
""" |
|
Initialization. |
|
INPUT: |
|
- in_features: shape of the input |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
alpha is initialized to 1 by default, higher values = higher-frequency. |
|
beta is initialized to 1 by default, higher values = higher-magnitude. |
|
alpha will be trained along with the rest of your model. |
|
""" |
|
super(SnakeBeta, self).__init__() |
|
self.in_features = in_features |
|
|
|
|
|
self.alpha_logscale = alpha_logscale |
|
if self.alpha_logscale: |
|
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) |
|
self.beta = nn.Parameter(torch.zeros(in_features) * alpha) |
|
else: |
|
self.alpha = nn.Parameter(torch.ones(in_features) * alpha) |
|
self.beta = nn.Parameter(torch.ones(in_features) * alpha) |
|
|
|
self.alpha.requires_grad = alpha_trainable |
|
self.beta.requires_grad = alpha_trainable |
|
|
|
self.no_div_by_zero = 0.000000001 |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the function. |
|
Applies the function to the input elementwise. |
|
SnakeBeta := x + 1/b * sin^2 (xa) |
|
""" |
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) |
|
beta = self.beta.unsqueeze(0).unsqueeze(-1) |
|
if self.alpha_logscale: |
|
alpha = torch.exp(alpha) |
|
beta = torch.exp(beta) |
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) |
|
|
|
return x |
|
|
|
class ResidualUnit(nn.Module): |
|
def __init__(self, dim: int = 16, dilation: int = 1): |
|
super().__init__() |
|
pad = ((7 - 1) * dilation) // 2 |
|
self.block = nn.Sequential( |
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), |
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=1), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.block(x) |
|
|
|
class CNNLSTM(nn.Module): |
|
def __init__(self, indim, outdim, head, global_pred=False): |
|
super().__init__() |
|
self.global_pred = global_pred |
|
self.model = nn.Sequential( |
|
ResidualUnit(indim, dilation=1), |
|
ResidualUnit(indim, dilation=2), |
|
ResidualUnit(indim, dilation=3), |
|
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)), |
|
Rearrange("b c t -> b t c"), |
|
) |
|
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)]) |
|
|
|
def forward(self, x): |
|
|
|
x = self.model(x) |
|
if self.global_pred: |
|
x = torch.mean(x, dim=1, keepdim=False) |
|
outs = [head(x) for head in self.heads] |
|
return outs |
|
|
|
def sequence_mask(length, max_length=None): |
|
if max_length is None: |
|
max_length = length.max() |
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device) |
|
return x.unsqueeze(0) < length.unsqueeze(1) |
|
class FAquantizer(nn.Module): |
|
def __init__(self, in_dim=1024, |
|
n_p_codebooks=1, |
|
n_c_codebooks=2, |
|
n_t_codebooks=2, |
|
n_r_codebooks=3, |
|
codebook_size=1024, |
|
codebook_dim=8, |
|
quantizer_dropout=0.5, |
|
causal=False, |
|
separate_prosody_encoder=False, |
|
timbre_norm=False,): |
|
super(FAquantizer, self).__init__() |
|
conv1d_type = SConv1d |
|
self.prosody_quantizer = ResidualVectorQuantize( |
|
input_dim=in_dim, |
|
n_codebooks=n_p_codebooks, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
quantizer_dropout=quantizer_dropout, |
|
) |
|
|
|
self.content_quantizer = ResidualVectorQuantize( |
|
input_dim=in_dim, |
|
n_codebooks=n_c_codebooks, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
quantizer_dropout=quantizer_dropout, |
|
) |
|
|
|
self.residual_quantizer = ResidualVectorQuantize( |
|
input_dim=in_dim, |
|
n_codebooks=n_r_codebooks, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
quantizer_dropout=quantizer_dropout, |
|
) |
|
|
|
self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal) |
|
self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal) |
|
self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal) |
|
|
|
self.prob_random_mask_residual = 0.75 |
|
|
|
SPECT_PARAMS = { |
|
"n_fft": 2048, |
|
"win_length": 1200, |
|
"hop_length": 300, |
|
} |
|
MEL_PARAMS = { |
|
"n_mels": 80, |
|
} |
|
|
|
self.to_mel = torchaudio.transforms.MelSpectrogram( |
|
n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS |
|
) |
|
self.mel_mean, self.mel_std = -4, 4 |
|
self.frame_rate = 24000 / 300 |
|
self.hop_length = 300 |
|
|
|
def preprocess(self, wave_tensor, n_bins=20): |
|
mel_tensor = self.to_mel(wave_tensor.squeeze(1)) |
|
mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std |
|
return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)] |
|
|
|
def forward(self, x, wave_segments): |
|
outs = 0 |
|
prosody_feature = self.preprocess(wave_segments) |
|
|
|
f0_input = prosody_feature |
|
f0_input = self.melspec_linear(f0_input) |
|
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to( |
|
f0_input.device).bool()) |
|
f0_input = self.melspec_linear2(f0_input) |
|
|
|
common_min_size = min(f0_input.size(2), x.size(2)) |
|
f0_input = f0_input[:, :, :common_min_size] |
|
|
|
x = x[:, :, :common_min_size] |
|
|
|
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( |
|
f0_input, 1 |
|
) |
|
outs += z_p.detach() |
|
|
|
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer( |
|
x, 2 |
|
) |
|
outs += z_c.detach() |
|
|
|
residual_feature = x - z_p.detach() - z_c.detach() |
|
|
|
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer( |
|
residual_feature, 3 |
|
) |
|
|
|
quantized = [z_p, z_c, z_r] |
|
codes = [codes_p, codes_c, codes_r] |
|
|
|
return quantized, codes |