RedMist137 commited on
Commit
9f32716
1 Parent(s): ec4484f

Upload folder using huggingface_hub

Browse files
Files changed (6) hide show
  1. latest +1 -0
  2. pytorch_model.bin +3 -0
  3. rng_state.pth +3 -0
  4. trainer_state.json +629 -0
  5. training_args.bin +3 -0
  6. zero_to_fp32.py +578 -0
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step4056
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c1131133dfa3e001b811f4f1885ad26824858523821bfe4cc3c3a43d88ac6c9
3
+ size 2724047473
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1784c9e20ffdc46b706882695c2108245d7626a328b6d70a37d079ad1fbbc989
3
+ size 14575
trainer_state.json ADDED
@@ -0,0 +1,629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9992609016999261,
5
+ "global_step": 1014,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 8.859191006777897e-06,
13
+ "loss": 13.4729,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.02,
18
+ "learning_rate": 1e-05,
19
+ "loss": 12.0959,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.03,
24
+ "learning_rate": 1e-05,
25
+ "loss": 11.6014,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.04,
30
+ "learning_rate": 1e-05,
31
+ "loss": 11.5596,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.05,
36
+ "learning_rate": 1e-05,
37
+ "loss": 10.7603,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 0.06,
42
+ "learning_rate": 1e-05,
43
+ "loss": 10.7387,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 0.07,
48
+ "learning_rate": 1e-05,
49
+ "loss": 10.1996,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.08,
54
+ "learning_rate": 1e-05,
55
+ "loss": 10.288,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 0.09,
60
+ "learning_rate": 1e-05,
61
+ "loss": 10.7616,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 0.1,
66
+ "learning_rate": 1e-05,
67
+ "loss": 9.9796,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 0.11,
72
+ "learning_rate": 1e-05,
73
+ "loss": 10.4114,
74
+ "step": 110
75
+ },
76
+ {
77
+ "epoch": 0.12,
78
+ "learning_rate": 1e-05,
79
+ "loss": 9.8634,
80
+ "step": 120
81
+ },
82
+ {
83
+ "epoch": 0.13,
84
+ "learning_rate": 1e-05,
85
+ "loss": 10.0931,
86
+ "step": 130
87
+ },
88
+ {
89
+ "epoch": 0.14,
90
+ "learning_rate": 1e-05,
91
+ "loss": 10.4561,
92
+ "step": 140
93
+ },
94
+ {
95
+ "epoch": 0.15,
96
+ "learning_rate": 1e-05,
97
+ "loss": 9.6889,
98
+ "step": 150
99
+ },
100
+ {
101
+ "epoch": 0.16,
102
+ "learning_rate": 1e-05,
103
+ "loss": 10.2836,
104
+ "step": 160
105
+ },
106
+ {
107
+ "epoch": 0.17,
108
+ "learning_rate": 1e-05,
109
+ "loss": 10.6696,
110
+ "step": 170
111
+ },
112
+ {
113
+ "epoch": 0.18,
114
+ "learning_rate": 1e-05,
115
+ "loss": 9.4472,
116
+ "step": 180
117
+ },
118
+ {
119
+ "epoch": 0.19,
120
+ "learning_rate": 1e-05,
121
+ "loss": 9.6487,
122
+ "step": 190
123
+ },
124
+ {
125
+ "epoch": 0.2,
126
+ "learning_rate": 1e-05,
127
+ "loss": 9.9001,
128
+ "step": 200
129
+ },
130
+ {
131
+ "epoch": 0.21,
132
+ "learning_rate": 1e-05,
133
+ "loss": 9.7743,
134
+ "step": 210
135
+ },
136
+ {
137
+ "epoch": 0.22,
138
+ "learning_rate": 1e-05,
139
+ "loss": 9.5565,
140
+ "step": 220
141
+ },
142
+ {
143
+ "epoch": 0.23,
144
+ "learning_rate": 1e-05,
145
+ "loss": 10.0926,
146
+ "step": 230
147
+ },
148
+ {
149
+ "epoch": 0.24,
150
+ "learning_rate": 1e-05,
151
+ "loss": 9.9098,
152
+ "step": 240
153
+ },
154
+ {
155
+ "epoch": 0.25,
156
+ "learning_rate": 1e-05,
157
+ "loss": 10.2233,
158
+ "step": 250
159
+ },
160
+ {
161
+ "epoch": 0.26,
162
+ "learning_rate": 1e-05,
163
+ "loss": 9.3122,
164
+ "step": 260
165
+ },
166
+ {
167
+ "epoch": 0.27,
168
+ "learning_rate": 1e-05,
169
+ "loss": 10.1783,
170
+ "step": 270
171
+ },
172
+ {
173
+ "epoch": 0.28,
174
+ "learning_rate": 1e-05,
175
+ "loss": 9.8594,
176
+ "step": 280
177
+ },
178
+ {
179
+ "epoch": 0.29,
180
+ "learning_rate": 1e-05,
181
+ "loss": 9.4915,
182
+ "step": 290
183
+ },
184
+ {
185
+ "epoch": 0.3,
186
+ "learning_rate": 1e-05,
187
+ "loss": 9.5937,
188
+ "step": 300
189
+ },
190
+ {
191
+ "epoch": 0.31,
192
+ "learning_rate": 1e-05,
193
+ "loss": 9.4549,
194
+ "step": 310
195
+ },
196
+ {
197
+ "epoch": 0.32,
198
+ "learning_rate": 1e-05,
199
+ "loss": 8.9867,
200
+ "step": 320
201
+ },
202
+ {
203
+ "epoch": 0.33,
204
+ "learning_rate": 1e-05,
205
+ "loss": 8.5459,
206
+ "step": 330
207
+ },
208
+ {
209
+ "epoch": 0.34,
210
+ "learning_rate": 1e-05,
211
+ "loss": 9.8911,
212
+ "step": 340
213
+ },
214
+ {
215
+ "epoch": 0.34,
216
+ "learning_rate": 1e-05,
217
+ "loss": 9.7777,
218
+ "step": 350
219
+ },
220
+ {
221
+ "epoch": 0.35,
222
+ "learning_rate": 1e-05,
223
+ "loss": 9.3521,
224
+ "step": 360
225
+ },
226
+ {
227
+ "epoch": 0.36,
228
+ "learning_rate": 1e-05,
229
+ "loss": 9.3037,
230
+ "step": 370
231
+ },
232
+ {
233
+ "epoch": 0.37,
234
+ "learning_rate": 1e-05,
235
+ "loss": 9.4073,
236
+ "step": 380
237
+ },
238
+ {
239
+ "epoch": 0.38,
240
+ "learning_rate": 1e-05,
241
+ "loss": 9.0094,
242
+ "step": 390
243
+ },
244
+ {
245
+ "epoch": 0.39,
246
+ "learning_rate": 1e-05,
247
+ "loss": 9.5733,
248
+ "step": 400
249
+ },
250
+ {
251
+ "epoch": 0.4,
252
+ "learning_rate": 1e-05,
253
+ "loss": 9.1377,
254
+ "step": 410
255
+ },
256
+ {
257
+ "epoch": 0.41,
258
+ "learning_rate": 1e-05,
259
+ "loss": 9.3544,
260
+ "step": 420
261
+ },
262
+ {
263
+ "epoch": 0.42,
264
+ "learning_rate": 1e-05,
265
+ "loss": 9.4602,
266
+ "step": 430
267
+ },
268
+ {
269
+ "epoch": 0.43,
270
+ "learning_rate": 1e-05,
271
+ "loss": 8.7363,
272
+ "step": 440
273
+ },
274
+ {
275
+ "epoch": 0.44,
276
+ "learning_rate": 1e-05,
277
+ "loss": 9.1664,
278
+ "step": 450
279
+ },
280
+ {
281
+ "epoch": 0.45,
282
+ "learning_rate": 1e-05,
283
+ "loss": 9.7826,
284
+ "step": 460
285
+ },
286
+ {
287
+ "epoch": 0.46,
288
+ "learning_rate": 1e-05,
289
+ "loss": 9.5404,
290
+ "step": 470
291
+ },
292
+ {
293
+ "epoch": 0.47,
294
+ "learning_rate": 1e-05,
295
+ "loss": 8.9968,
296
+ "step": 480
297
+ },
298
+ {
299
+ "epoch": 0.48,
300
+ "learning_rate": 1e-05,
301
+ "loss": 8.5034,
302
+ "step": 490
303
+ },
304
+ {
305
+ "epoch": 0.49,
306
+ "learning_rate": 1e-05,
307
+ "loss": 9.5697,
308
+ "step": 500
309
+ },
310
+ {
311
+ "epoch": 0.5,
312
+ "learning_rate": 1e-05,
313
+ "loss": 10.0982,
314
+ "step": 510
315
+ },
316
+ {
317
+ "epoch": 0.51,
318
+ "learning_rate": 1e-05,
319
+ "loss": 9.2125,
320
+ "step": 520
321
+ },
322
+ {
323
+ "epoch": 0.52,
324
+ "learning_rate": 1e-05,
325
+ "loss": 8.9695,
326
+ "step": 530
327
+ },
328
+ {
329
+ "epoch": 0.53,
330
+ "learning_rate": 1e-05,
331
+ "loss": 9.5901,
332
+ "step": 540
333
+ },
334
+ {
335
+ "epoch": 0.54,
336
+ "learning_rate": 1e-05,
337
+ "loss": 8.9886,
338
+ "step": 550
339
+ },
340
+ {
341
+ "epoch": 0.55,
342
+ "learning_rate": 1e-05,
343
+ "loss": 9.2479,
344
+ "step": 560
345
+ },
346
+ {
347
+ "epoch": 0.56,
348
+ "learning_rate": 1e-05,
349
+ "loss": 8.9476,
350
+ "step": 570
351
+ },
352
+ {
353
+ "epoch": 0.57,
354
+ "learning_rate": 1e-05,
355
+ "loss": 8.9282,
356
+ "step": 580
357
+ },
358
+ {
359
+ "epoch": 0.58,
360
+ "learning_rate": 1e-05,
361
+ "loss": 8.9914,
362
+ "step": 590
363
+ },
364
+ {
365
+ "epoch": 0.59,
366
+ "learning_rate": 1e-05,
367
+ "loss": 8.6794,
368
+ "step": 600
369
+ },
370
+ {
371
+ "epoch": 0.6,
372
+ "learning_rate": 1e-05,
373
+ "loss": 8.8832,
374
+ "step": 610
375
+ },
376
+ {
377
+ "epoch": 0.61,
378
+ "learning_rate": 1e-05,
379
+ "loss": 9.1244,
380
+ "step": 620
381
+ },
382
+ {
383
+ "epoch": 0.62,
384
+ "learning_rate": 1e-05,
385
+ "loss": 8.986,
386
+ "step": 630
387
+ },
388
+ {
389
+ "epoch": 0.63,
390
+ "learning_rate": 1e-05,
391
+ "loss": 8.2248,
392
+ "step": 640
393
+ },
394
+ {
395
+ "epoch": 0.64,
396
+ "learning_rate": 1e-05,
397
+ "loss": 8.432,
398
+ "step": 650
399
+ },
400
+ {
401
+ "epoch": 0.65,
402
+ "learning_rate": 1e-05,
403
+ "loss": 8.8191,
404
+ "step": 660
405
+ },
406
+ {
407
+ "epoch": 0.66,
408
+ "learning_rate": 1e-05,
409
+ "loss": 8.4771,
410
+ "step": 670
411
+ },
412
+ {
413
+ "epoch": 0.67,
414
+ "learning_rate": 1e-05,
415
+ "loss": 9.0549,
416
+ "step": 680
417
+ },
418
+ {
419
+ "epoch": 0.68,
420
+ "learning_rate": 1e-05,
421
+ "loss": 8.2279,
422
+ "step": 690
423
+ },
424
+ {
425
+ "epoch": 0.69,
426
+ "learning_rate": 1e-05,
427
+ "loss": 9.5653,
428
+ "step": 700
429
+ },
430
+ {
431
+ "epoch": 0.7,
432
+ "learning_rate": 1e-05,
433
+ "loss": 9.299,
434
+ "step": 710
435
+ },
436
+ {
437
+ "epoch": 0.71,
438
+ "learning_rate": 1e-05,
439
+ "loss": 9.6811,
440
+ "step": 720
441
+ },
442
+ {
443
+ "epoch": 0.72,
444
+ "learning_rate": 1e-05,
445
+ "loss": 8.8528,
446
+ "step": 730
447
+ },
448
+ {
449
+ "epoch": 0.73,
450
+ "learning_rate": 1e-05,
451
+ "loss": 8.4265,
452
+ "step": 740
453
+ },
454
+ {
455
+ "epoch": 0.74,
456
+ "learning_rate": 1e-05,
457
+ "loss": 9.1895,
458
+ "step": 750
459
+ },
460
+ {
461
+ "epoch": 0.75,
462
+ "learning_rate": 1e-05,
463
+ "loss": 8.7242,
464
+ "step": 760
465
+ },
466
+ {
467
+ "epoch": 0.76,
468
+ "learning_rate": 1e-05,
469
+ "loss": 8.3835,
470
+ "step": 770
471
+ },
472
+ {
473
+ "epoch": 0.77,
474
+ "learning_rate": 1e-05,
475
+ "loss": 8.6104,
476
+ "step": 780
477
+ },
478
+ {
479
+ "epoch": 0.78,
480
+ "learning_rate": 1e-05,
481
+ "loss": 8.5621,
482
+ "step": 790
483
+ },
484
+ {
485
+ "epoch": 0.79,
486
+ "learning_rate": 1e-05,
487
+ "loss": 8.7473,
488
+ "step": 800
489
+ },
490
+ {
491
+ "epoch": 0.8,
492
+ "learning_rate": 1e-05,
493
+ "loss": 9.6276,
494
+ "step": 810
495
+ },
496
+ {
497
+ "epoch": 0.81,
498
+ "learning_rate": 1e-05,
499
+ "loss": 9.1603,
500
+ "step": 820
501
+ },
502
+ {
503
+ "epoch": 0.82,
504
+ "learning_rate": 1e-05,
505
+ "loss": 8.1999,
506
+ "step": 830
507
+ },
508
+ {
509
+ "epoch": 0.83,
510
+ "learning_rate": 1e-05,
511
+ "loss": 7.6178,
512
+ "step": 840
513
+ },
514
+ {
515
+ "epoch": 0.84,
516
+ "learning_rate": 1e-05,
517
+ "loss": 9.0851,
518
+ "step": 850
519
+ },
520
+ {
521
+ "epoch": 0.85,
522
+ "learning_rate": 1e-05,
523
+ "loss": 7.3378,
524
+ "step": 860
525
+ },
526
+ {
527
+ "epoch": 0.86,
528
+ "learning_rate": 1e-05,
529
+ "loss": 9.4587,
530
+ "step": 870
531
+ },
532
+ {
533
+ "epoch": 0.87,
534
+ "learning_rate": 1e-05,
535
+ "loss": 8.0533,
536
+ "step": 880
537
+ },
538
+ {
539
+ "epoch": 0.88,
540
+ "learning_rate": 1e-05,
541
+ "loss": 8.5065,
542
+ "step": 890
543
+ },
544
+ {
545
+ "epoch": 0.89,
546
+ "learning_rate": 1e-05,
547
+ "loss": 8.7553,
548
+ "step": 900
549
+ },
550
+ {
551
+ "epoch": 0.9,
552
+ "learning_rate": 1e-05,
553
+ "loss": 9.114,
554
+ "step": 910
555
+ },
556
+ {
557
+ "epoch": 0.91,
558
+ "learning_rate": 1e-05,
559
+ "loss": 8.7951,
560
+ "step": 920
561
+ },
562
+ {
563
+ "epoch": 0.92,
564
+ "learning_rate": 1e-05,
565
+ "loss": 7.919,
566
+ "step": 930
567
+ },
568
+ {
569
+ "epoch": 0.93,
570
+ "learning_rate": 1e-05,
571
+ "loss": 9.2856,
572
+ "step": 940
573
+ },
574
+ {
575
+ "epoch": 0.94,
576
+ "learning_rate": 1e-05,
577
+ "loss": 9.0515,
578
+ "step": 950
579
+ },
580
+ {
581
+ "epoch": 0.95,
582
+ "learning_rate": 1e-05,
583
+ "loss": 8.8203,
584
+ "step": 960
585
+ },
586
+ {
587
+ "epoch": 0.96,
588
+ "learning_rate": 1e-05,
589
+ "loss": 8.0901,
590
+ "step": 970
591
+ },
592
+ {
593
+ "epoch": 0.97,
594
+ "learning_rate": 1e-05,
595
+ "loss": 8.5848,
596
+ "step": 980
597
+ },
598
+ {
599
+ "epoch": 0.98,
600
+ "learning_rate": 1e-05,
601
+ "loss": 8.3593,
602
+ "step": 990
603
+ },
604
+ {
605
+ "epoch": 0.99,
606
+ "learning_rate": 1e-05,
607
+ "loss": 8.5565,
608
+ "step": 1000
609
+ },
610
+ {
611
+ "epoch": 0.99,
612
+ "eval_runtime": 204.0743,
613
+ "eval_samples_per_second": 79.554,
614
+ "eval_steps_per_second": 19.89,
615
+ "step": 1000
616
+ },
617
+ {
618
+ "epoch": 1.0,
619
+ "learning_rate": 1e-05,
620
+ "loss": 8.9889,
621
+ "step": 1010
622
+ }
623
+ ],
624
+ "max_steps": 1014,
625
+ "num_train_epochs": 1,
626
+ "total_flos": 0.0,
627
+ "trial_name": null,
628
+ "trial_params": null
629
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c53d882d52fd62e04fa20eb9eab5160d58f644211bf0b09655979f7e295e876c
3
+ size 4411
zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage <= 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage <= 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage <= 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)