End of training
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imdb
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: N_roberta_imdb_padding60model
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: imdb
|
18 |
+
type: imdb
|
19 |
+
config: plain_text
|
20 |
+
split: test
|
21 |
+
args: plain_text
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.95004
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# N_roberta_imdb_padding60model
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4811
|
36 |
+
- Accuracy: 0.9500
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 2e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 20
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 0.2157 | 1.0 | 1563 | 0.2020 | 0.9366 |
|
68 |
+
| 0.1716 | 2.0 | 3126 | 0.1757 | 0.9467 |
|
69 |
+
| 0.1135 | 3.0 | 4689 | 0.2601 | 0.9442 |
|
70 |
+
| 0.0834 | 4.0 | 6252 | 0.2498 | 0.9485 |
|
71 |
+
| 0.0533 | 5.0 | 7815 | 0.3480 | 0.9452 |
|
72 |
+
| 0.0441 | 6.0 | 9378 | 0.3548 | 0.9371 |
|
73 |
+
| 0.0319 | 7.0 | 10941 | 0.3257 | 0.9474 |
|
74 |
+
| 0.0264 | 8.0 | 12504 | 0.3932 | 0.9457 |
|
75 |
+
| 0.0239 | 9.0 | 14067 | 0.3367 | 0.9469 |
|
76 |
+
| 0.0185 | 10.0 | 15630 | 0.4500 | 0.94 |
|
77 |
+
| 0.018 | 11.0 | 17193 | 0.3871 | 0.9470 |
|
78 |
+
| 0.0153 | 12.0 | 18756 | 0.4206 | 0.9456 |
|
79 |
+
| 0.0101 | 13.0 | 20319 | 0.4027 | 0.9492 |
|
80 |
+
| 0.005 | 14.0 | 21882 | 0.4701 | 0.9477 |
|
81 |
+
| 0.0051 | 15.0 | 23445 | 0.4454 | 0.9484 |
|
82 |
+
| 0.0013 | 16.0 | 25008 | 0.5015 | 0.9493 |
|
83 |
+
| 0.007 | 17.0 | 26571 | 0.5011 | 0.9476 |
|
84 |
+
| 0.0022 | 18.0 | 28134 | 0.4798 | 0.95 |
|
85 |
+
| 0.0047 | 19.0 | 29697 | 0.4794 | 0.9498 |
|
86 |
+
| 0.0014 | 20.0 | 31260 | 0.4811 | 0.9500 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.33.2
|
92 |
+
- Pytorch 2.0.1+cu117
|
93 |
+
- Datasets 2.14.5
|
94 |
+
- Tokenizers 0.13.3
|