Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 271.92 +/- 16.53
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a8805ca4f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a8805ca5000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a8805ca5090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a8805ca5120>", "_build": "<function ActorCriticPolicy._build at 0x7a8805ca51b0>", "forward": "<function ActorCriticPolicy.forward at 0x7a8805ca5240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a8805ca52d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a8805ca5360>", "_predict": "<function ActorCriticPolicy._predict at 0x7a8805ca53f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a8805ca5480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a8805ca5510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a8805ca55a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8805c3a500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719985471137953648, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaEH72u+Ya6ooC/O6lSEziYh5U6GjBttQAAgD8AAIA/M8ucvCnkd7re1HM5SQxNtivyELubaI24AACAPwAAgD9mNKq8FC6IuojHFbylSKo2LfPwuuvOGrYAAIA/AACAP9qLir325Cq6ukcbvPJ6W7Vbiay6A1rQNAAAgD8AAIA/c/aGvY9GALp1xqc53mqrtXHF1zrhsMS4AACAPwAAgD/AG4u9XOMrusShrjhL/yc01r+sO54IyrcAAIA/AACAPxrpFD3hDo66ej4INbm/XzCXMxO7xXxotAAAgD8AAIA/M3XJPPYsUrplGNk6N6mQNbg+Urq4BAC6AACAPwAAgD+abvy8w2F8utIcEjnnpRi2tHieuZPDKbgAAIA/AACAP82MErzD2X+6iovLut6VCrZs6rA6sr7tOQAAgD8AAIA/gL8MPVIoiLkSygE33uxXsLWngTs0Nxy2AACAPwAAgD9mBhY8w6l2upKaqTvLfyk4VFcvOkMHWrcAAIA/AACAP81wjrtcox26JTy4OuZIy7SO1my6s4LTuQAAgD8AAIA/s68dPXGta7kdlDa8Gh/INqBFnDkCGDm2AACAPwAAgD8a3lm9wxFOusqSZLhLHHSzO629uigAhTcAAIA/AACAP5rKsLwUhIC6g/prugD2rzWhWCa6r7CJOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUkA2Ifr8mMAWyUTegDjAF0lEdAlgZzQqqfe3V9lChoBkdAY5o4uK4x12gHTegDaAhHQJYHCk30f5l1fZQoaAZHQGa/aVt4zJpoB03oA2gIR0CWCVxdIGyHdX2UKGgGR0BonlQVKwpwaAdN6ANoCEdAlgmNyksSTXV9lChoBkdAZftVjqfOEGgHTegDaAhHQJYKTbGm1pl1fZQoaAZHQHDRx5xBE8doB02GA2gIR0CWDf3jMmngdX2UKGgGR0BUnWJBPbfxaAdL0GgIR0CWDinbZezEdX2UKGgGR0A6+C7K7qY7aAdLu2gIR0CWEQSOinHedX2UKGgGR0Bk4gc5sCT2aAdN6ANoCEdAlhYF3EAHV3V9lChoBkdAZDTGYrrgO2gHTegDaAhHQJYa/a4+bEx1fZQoaAZHQGNg2attALRoB03oA2gIR0CWG6NS619fdX2UKGgGR0Bm025Fw1iwaAdN6ANoCEdAlhv42Kl54XV9lChoBkdAakYeI2wV02gHTegDaAhHQJYeHCHh0hh1fZQoaAZHQGD+jrZ8KHBoB03oA2gIR0CWJbdIoVmBdX2UKGgGR0BhvT26ClJpaAdN6ANoCEdAlifyYsunM3V9lChoBkdAZLBYOlO45WgHTegDaAhHQJYpVmlImPZ1fZQoaAZHQGV53Tuv2XdoB03oA2gIR0CWLO9s7+1jdX2UKGgGR0Bg9P4ZdfLLaAdN6ANoCEdAlk2C2hIvrXV9lChoBkdAaPQOf/WDpWgHTegDaAhHQJZQpe+mFal1fZQoaAZHQGeIW5Yoy9FoB03oA2gIR0CWUM95Qgs9dX2UKGgGR0BpL/yEtdzGaAdN6ANoCEdAllF1kMCtBHV9lChoBkdAZr8oYvWYnmgHTegDaAhHQJZU0Oqebut1fZQoaAZHQGlB7kwN9YxoB03oA2gIR0CWVPB5HEuQdX2UKGgGR0Bjib8Jlar4aAdN6ANoCEdAllcYyKvV3HV9lChoBkdAZ/vhjvuw5mgHTegDaAhHQJZbDe3x4IN1fZQoaAZHQHHjFL39JjFoB00hAWgIR0CWXUyjYZl4dX2UKGgGR0BqnnFJg9eQaAdN6ANoCEdAlmAZiRW913V9lChoBkdAZiyrGR3eN2gHTegDaAhHQJZgwT+NtIl1fZQoaAZHQHI52H+IdlxoB02qAWgIR0CWYOr2QGOddX2UKGgGR0BnRLTMJQchaAdN6ANoCEdAlmEUmICU5nV9lChoBkdAZs+O8TSLImgHTegDaAhHQJZjEkJKJ2t1fZQoaAZHQEPYnXumaYxoB0uwaAhHQJZnbhzeXRh1fZQoaAZHQGU2GQKa5PNoB03oA2gIR0CWaOstCiRGdX2UKGgGR0BiQKaNMoMKaAdN6ANoCEdAlmrOpsGgSXV9lChoBkdAYuTJg9eQdWgHTegDaAhHQJZsEyeqaPV1fZQoaAZHQGge/OUt7KJoB03oA2gIR0CWb03d9Dx9dX2UKGgGR0Bg5Mqaw2VFaAdN6ANoCEdAlpPQIIF/x3V9lChoBkdAYwnutwJgLWgHTegDaAhHQJaUcaR6nix1fZQoaAZHQGIySCe2/i5oB03oA2gIR0CWl3z9CNS7dX2UKGgGR0BioRX8wYceaAdN6ANoCEdAlpecstkFwHV9lChoBkdAaJfyHVPN3WgHTegDaAhHQJaZ09aEBbR1fZQoaAZHQGbwLORkmQdoB03oA2gIR0CWndGAkLQYdX2UKGgGR0Bkt9QIldC3aAdN6ANoCEdAlp/i9Zid8XV9lChoBkdAXK7A+IMz/WgHTegDaAhHQJajcYGdI5J1fZQoaAZHQGA28OkLx7RoB03oA2gIR0CWo6L0Bfa6dX2UKGgGR0Bo6ztu1ndwaAdN6ANoCEdAlqPYaP0ZnHV9lChoBkdAZZNxmTTvzGgHTegDaAhHQJamd0IToMd1fZQoaAZHQGLMFINEw35oB03oA2gIR0CWrNmVJL/TdX2UKGgGR0BiTd+d9UjtaAdN6ANoCEdAlq7TLwF1S3V9lChoBkdAYABMewLVnWgHTegDaAhHQJaw05n13+x1fZQoaAZHQGhkqXv6TGJoB03oA2gIR0CWsht3wCr+dX2UKGgGR0BnppzeXRgJaAdN6ANoCEdAlrV726ClJ3V9lChoBkdAXhgs052hZmgHTegDaAhHQJbVtx7zCk51fZQoaAZHQGysZB1LamJoB03lAWgIR0CW1iM4LkS3dX2UKGgGR0BlCzWK/EflaAdN6ANoCEdAltZxomG/OHV9lChoBkdAZ7mljVhCt2gHTegDaAhHQJbavO5avA51fZQoaAZHQGeg2Zy+6AhoB03oA2gIR0CW2u2GZeAvdX2UKGgGR0Bfzfomois5aAdN6ANoCEdAlt3+uRs/IXV9lChoBkdAZIT4+r2g4GgHTegDaAhHQJbjDIU8FIN1fZQoaAZHQGGzklu3trtoB03oA2gIR0CW5SkaMrEtdX2UKGgGR0BnLnNqxkd4aAdN6ANoCEdAluhvatcOb3V9lChoBkdAZVCKNQ0oB2gHTegDaAhHQJbomM85jpd1fZQoaAZHQGJdsdcSoOxoB03oA2gIR0CW6MNqQA+7dX2UKGgGR0BmPaZ0CA+ZaAdN6ANoCEdAlurN+PRzBHV9lChoBkdAafPUVi4J/2gHTegDaAhHQJbxAIfKZD11fZQoaAZHQGESbiqABktoB03oA2gIR0CW8wIg/1QJdX2UKGgGR0BkCPyup0fYaAdN6ANoCEdAlvRJRjz7M3V9lChoBkdAYGkfDk2gnWgHTegDaAhHQJb3XqB3A211fZQoaAZHQGfFVX3g1m9oB03oA2gIR0CXGaXYUWVNdX2UKGgGR0BjhAegctGvaAdN6ANoCEdAlxoNOh0yQHV9lChoBkdAZ5tag2606mgHTegDaAhHQJcaTF2mpER1fZQoaAZHQGOKDTa0x/NoB03oA2gIR0CXHXg2606YdX2UKGgGR0BjmCIznA6/aAdN6ANoCEdAlx2ZdnkDIXV9lChoBkdAZp6aDPGACmgHTegDaAhHQJcf5xAB1cN1fZQoaAZHQGMPn0Cih39oB03oA2gIR0CXJDZ5iVjadX2UKGgGR0BjwtU0elsQaAdN6ANoCEdAlyagV45cT3V9lChoBkdAcPvu2JBPbmgHTVICaAhHQJcnKgsbvPV1fZQoaAZHQGjSplz2exxoB03oA2gIR0CXKf3RXwLFdX2UKGgGR0BoT9ELH+6zaAdN6ANoCEdAlyomkrPMS3V9lChoBkdAY8dMZgogFGgHTegDaAhHQJcqUkka/AV1fZQoaAZHQGbzCiZfD1poB03oA2gIR0CXLFu+AVfvdX2UKGgGR0BlaThrFfiQaAdN6ANoCEdAlzKyqU/wAnV9lChoBkdAYsYyyD7Ik2gHTegDaAhHQJc03K2a2F51fZQoaAZHQGfoWfseGPBoB03oA2gIR0CXNj3z+WGAdX2UKGgGR0BmiJKFqSHNaAdN6ANoCEdAl15pJbt7bHV9lChoBkdAZKAQHRkVe2gHTegDaAhHQJde4bp/wy91fZQoaAZHQGUVxxkupS9oB03oA2gIR0CXXycRUWEcdX2UKGgGR0Bkip4SpR4yaAdN6ANoCEdAl2Jeg13t8nV9lChoBkdAZEcdZJTVD2gHTegDaAhHQJdigcm0E5h1fZQoaAZHQGb/KgIyCWhoB03oA2gIR0CXZM5Etuk2dX2UKGgGR0Bnj1ALRa5gaAdN6ANoCEdAl2jw2606YHV9lChoBkdAYm3jQRf4RGgHTegDaAhHQJdrFy2hIvt1fZQoaAZHQGhGj2zv7WNoB03oA2gIR0CXa5yC4BmxdX2UKGgGR0Bidig00m+kaAdN6ANoCEdAl242nO0LMXV9lChoBkdAY4oUOd5IH2gHTegDaAhHQJduXjebd8B1fZQoaAZHQGVc7+cYqG1oB03oA2gIR0CXboVXmvGIdX2UKGgGR0BmlLncL0BfaAdN6ANoCEdAl3Bz2SMcZXV9lChoBkdAaT0vtdAxBWgHTegDaAhHQJd4Zr433pR1fZQoaAZHQHBZ9TtLL6loB03CA2gIR0CXeNo1UEPldX2UKGgGR0Bk+7slb/wRaAdN6ANoCEdAl304ZZSvT3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e842eda13ae927cad7564c6b78260236d4690626c7fa7b5099ace08def023d75
|
3 |
+
size 148084
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a8805ca4f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a8805ca5000>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a8805ca5090>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a8805ca5120>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a8805ca51b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a8805ca5240>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a8805ca52d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a8805ca5360>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a8805ca53f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a8805ca5480>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a8805ca5510>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a8805ca55a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a8805c3a500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1719985471137953648,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaEH72u+Ya6ooC/O6lSEziYh5U6GjBttQAAgD8AAIA/M8ucvCnkd7re1HM5SQxNtivyELubaI24AACAPwAAgD9mNKq8FC6IuojHFbylSKo2LfPwuuvOGrYAAIA/AACAP9qLir325Cq6ukcbvPJ6W7Vbiay6A1rQNAAAgD8AAIA/c/aGvY9GALp1xqc53mqrtXHF1zrhsMS4AACAPwAAgD/AG4u9XOMrusShrjhL/yc01r+sO54IyrcAAIA/AACAPxrpFD3hDo66ej4INbm/XzCXMxO7xXxotAAAgD8AAIA/M3XJPPYsUrplGNk6N6mQNbg+Urq4BAC6AACAPwAAgD+abvy8w2F8utIcEjnnpRi2tHieuZPDKbgAAIA/AACAP82MErzD2X+6iovLut6VCrZs6rA6sr7tOQAAgD8AAIA/gL8MPVIoiLkSygE33uxXsLWngTs0Nxy2AACAPwAAgD9mBhY8w6l2upKaqTvLfyk4VFcvOkMHWrcAAIA/AACAP81wjrtcox26JTy4OuZIy7SO1my6s4LTuQAAgD8AAIA/s68dPXGta7kdlDa8Gh/INqBFnDkCGDm2AACAPwAAgD8a3lm9wxFOusqSZLhLHHSzO629uigAhTcAAIA/AACAP5rKsLwUhIC6g/prugD2rzWhWCa6r7CJOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUkA2Ifr8mMAWyUTegDjAF0lEdAlgZzQqqfe3V9lChoBkdAY5o4uK4x12gHTegDaAhHQJYHCk30f5l1fZQoaAZHQGa/aVt4zJpoB03oA2gIR0CWCVxdIGyHdX2UKGgGR0BonlQVKwpwaAdN6ANoCEdAlgmNyksSTXV9lChoBkdAZftVjqfOEGgHTegDaAhHQJYKTbGm1pl1fZQoaAZHQHDRx5xBE8doB02GA2gIR0CWDf3jMmngdX2UKGgGR0BUnWJBPbfxaAdL0GgIR0CWDinbZezEdX2UKGgGR0A6+C7K7qY7aAdLu2gIR0CWEQSOinHedX2UKGgGR0Bk4gc5sCT2aAdN6ANoCEdAlhYF3EAHV3V9lChoBkdAZDTGYrrgO2gHTegDaAhHQJYa/a4+bEx1fZQoaAZHQGNg2attALRoB03oA2gIR0CWG6NS619fdX2UKGgGR0Bm025Fw1iwaAdN6ANoCEdAlhv42Kl54XV9lChoBkdAakYeI2wV02gHTegDaAhHQJYeHCHh0hh1fZQoaAZHQGD+jrZ8KHBoB03oA2gIR0CWJbdIoVmBdX2UKGgGR0BhvT26ClJpaAdN6ANoCEdAlifyYsunM3V9lChoBkdAZLBYOlO45WgHTegDaAhHQJYpVmlImPZ1fZQoaAZHQGV53Tuv2XdoB03oA2gIR0CWLO9s7+1jdX2UKGgGR0Bg9P4ZdfLLaAdN6ANoCEdAlk2C2hIvrXV9lChoBkdAaPQOf/WDpWgHTegDaAhHQJZQpe+mFal1fZQoaAZHQGeIW5Yoy9FoB03oA2gIR0CWUM95Qgs9dX2UKGgGR0BpL/yEtdzGaAdN6ANoCEdAllF1kMCtBHV9lChoBkdAZr8oYvWYnmgHTegDaAhHQJZU0Oqebut1fZQoaAZHQGlB7kwN9YxoB03oA2gIR0CWVPB5HEuQdX2UKGgGR0Bjib8Jlar4aAdN6ANoCEdAllcYyKvV3HV9lChoBkdAZ/vhjvuw5mgHTegDaAhHQJZbDe3x4IN1fZQoaAZHQHHjFL39JjFoB00hAWgIR0CWXUyjYZl4dX2UKGgGR0BqnnFJg9eQaAdN6ANoCEdAlmAZiRW913V9lChoBkdAZiyrGR3eN2gHTegDaAhHQJZgwT+NtIl1fZQoaAZHQHI52H+IdlxoB02qAWgIR0CWYOr2QGOddX2UKGgGR0BnRLTMJQchaAdN6ANoCEdAlmEUmICU5nV9lChoBkdAZs+O8TSLImgHTegDaAhHQJZjEkJKJ2t1fZQoaAZHQEPYnXumaYxoB0uwaAhHQJZnbhzeXRh1fZQoaAZHQGU2GQKa5PNoB03oA2gIR0CWaOstCiRGdX2UKGgGR0BiQKaNMoMKaAdN6ANoCEdAlmrOpsGgSXV9lChoBkdAYuTJg9eQdWgHTegDaAhHQJZsEyeqaPV1fZQoaAZHQGge/OUt7KJoB03oA2gIR0CWb03d9Dx9dX2UKGgGR0Bg5Mqaw2VFaAdN6ANoCEdAlpPQIIF/x3V9lChoBkdAYwnutwJgLWgHTegDaAhHQJaUcaR6nix1fZQoaAZHQGIySCe2/i5oB03oA2gIR0CWl3z9CNS7dX2UKGgGR0BioRX8wYceaAdN6ANoCEdAlpecstkFwHV9lChoBkdAaJfyHVPN3WgHTegDaAhHQJaZ09aEBbR1fZQoaAZHQGbwLORkmQdoB03oA2gIR0CWndGAkLQYdX2UKGgGR0Bkt9QIldC3aAdN6ANoCEdAlp/i9Zid8XV9lChoBkdAXK7A+IMz/WgHTegDaAhHQJajcYGdI5J1fZQoaAZHQGA28OkLx7RoB03oA2gIR0CWo6L0Bfa6dX2UKGgGR0Bo6ztu1ndwaAdN6ANoCEdAlqPYaP0ZnHV9lChoBkdAZZNxmTTvzGgHTegDaAhHQJamd0IToMd1fZQoaAZHQGLMFINEw35oB03oA2gIR0CWrNmVJL/TdX2UKGgGR0BiTd+d9UjtaAdN6ANoCEdAlq7TLwF1S3V9lChoBkdAYABMewLVnWgHTegDaAhHQJaw05n13+x1fZQoaAZHQGhkqXv6TGJoB03oA2gIR0CWsht3wCr+dX2UKGgGR0BnppzeXRgJaAdN6ANoCEdAlrV726ClJ3V9lChoBkdAXhgs052hZmgHTegDaAhHQJbVtx7zCk51fZQoaAZHQGysZB1LamJoB03lAWgIR0CW1iM4LkS3dX2UKGgGR0BlCzWK/EflaAdN6ANoCEdAltZxomG/OHV9lChoBkdAZ7mljVhCt2gHTegDaAhHQJbavO5avA51fZQoaAZHQGeg2Zy+6AhoB03oA2gIR0CW2u2GZeAvdX2UKGgGR0Bfzfomois5aAdN6ANoCEdAlt3+uRs/IXV9lChoBkdAZIT4+r2g4GgHTegDaAhHQJbjDIU8FIN1fZQoaAZHQGGzklu3trtoB03oA2gIR0CW5SkaMrEtdX2UKGgGR0BnLnNqxkd4aAdN6ANoCEdAluhvatcOb3V9lChoBkdAZVCKNQ0oB2gHTegDaAhHQJbomM85jpd1fZQoaAZHQGJdsdcSoOxoB03oA2gIR0CW6MNqQA+7dX2UKGgGR0BmPaZ0CA+ZaAdN6ANoCEdAlurN+PRzBHV9lChoBkdAafPUVi4J/2gHTegDaAhHQJbxAIfKZD11fZQoaAZHQGESbiqABktoB03oA2gIR0CW8wIg/1QJdX2UKGgGR0BkCPyup0fYaAdN6ANoCEdAlvRJRjz7M3V9lChoBkdAYGkfDk2gnWgHTegDaAhHQJb3XqB3A211fZQoaAZHQGfFVX3g1m9oB03oA2gIR0CXGaXYUWVNdX2UKGgGR0BjhAegctGvaAdN6ANoCEdAlxoNOh0yQHV9lChoBkdAZ5tag2606mgHTegDaAhHQJcaTF2mpER1fZQoaAZHQGOKDTa0x/NoB03oA2gIR0CXHXg2606YdX2UKGgGR0BjmCIznA6/aAdN6ANoCEdAlx2ZdnkDIXV9lChoBkdAZp6aDPGACmgHTegDaAhHQJcf5xAB1cN1fZQoaAZHQGMPn0Cih39oB03oA2gIR0CXJDZ5iVjadX2UKGgGR0BjwtU0elsQaAdN6ANoCEdAlyagV45cT3V9lChoBkdAcPvu2JBPbmgHTVICaAhHQJcnKgsbvPV1fZQoaAZHQGjSplz2exxoB03oA2gIR0CXKf3RXwLFdX2UKGgGR0BoT9ELH+6zaAdN6ANoCEdAlyomkrPMS3V9lChoBkdAY8dMZgogFGgHTegDaAhHQJcqUkka/AV1fZQoaAZHQGbzCiZfD1poB03oA2gIR0CXLFu+AVfvdX2UKGgGR0BlaThrFfiQaAdN6ANoCEdAlzKyqU/wAnV9lChoBkdAYsYyyD7Ik2gHTegDaAhHQJc03K2a2F51fZQoaAZHQGfoWfseGPBoB03oA2gIR0CXNj3z+WGAdX2UKGgGR0BmiJKFqSHNaAdN6ANoCEdAl15pJbt7bHV9lChoBkdAZKAQHRkVe2gHTegDaAhHQJde4bp/wy91fZQoaAZHQGUVxxkupS9oB03oA2gIR0CXXycRUWEcdX2UKGgGR0Bkip4SpR4yaAdN6ANoCEdAl2Jeg13t8nV9lChoBkdAZEcdZJTVD2gHTegDaAhHQJdigcm0E5h1fZQoaAZHQGb/KgIyCWhoB03oA2gIR0CXZM5Etuk2dX2UKGgGR0Bnj1ALRa5gaAdN6ANoCEdAl2jw2606YHV9lChoBkdAYm3jQRf4RGgHTegDaAhHQJdrFy2hIvt1fZQoaAZHQGhGj2zv7WNoB03oA2gIR0CXa5yC4BmxdX2UKGgGR0Bidig00m+kaAdN6ANoCEdAl242nO0LMXV9lChoBkdAY4oUOd5IH2gHTegDaAhHQJduXjebd8B1fZQoaAZHQGVc7+cYqG1oB03oA2gIR0CXboVXmvGIdX2UKGgGR0BmlLncL0BfaAdN6ANoCEdAl3Bz2SMcZXV9lChoBkdAaT0vtdAxBWgHTegDaAhHQJd4Zr433pR1fZQoaAZHQHBZ9TtLL6loB03CA2gIR0CXeNo1UEPldX2UKGgGR0Bk+7slb/wRaAdN6ANoCEdAl304ZZSvT3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f558aaf38313f7dd2cfa926286afb63f6b27e9419d57c21f032454ac77563b6
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f12ff9531bae8a7472652b8803eebfd32822219b151c7dd95f1a58f1688cda08
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (183 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 271.9237422190562, "std_reward": 16.533032573302947, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-03T06:06:28.900275"}
|