Safetensors
GGUF
English
materials-science
computational-materials
materials-analysis
property-prediction
materials-discovery
crystal-structure
band-gap-prediction
thermal-properties
mechanical-properties
electronic-properties
materials-informatics
scientific-ai
chain-of-thought
structured-output
reasoning
materials-characterization
formation-energy-analysis
thermodynamic-stability
materials-optimization
predictive-modeling
materials-classification
structure-property-correlation
semiconductor-analysis
high-temperature-materials
power-electronics-materials
materials-screening
research-grade-analysis
industry-applications
MaterialsAnalyst-AI-7B
MaterialsAnalyst-AI
MaterialsAnalyst
Update Training/Training_Documentation.txt
Browse files
Training/Training_Documentation.txt
CHANGED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MaterialsAnalyst-AI-7B Training Documentation
|
| 2 |
+
================================================
|
| 3 |
+
|
| 4 |
+
Model Training Details
|
| 5 |
+
---------------------
|
| 6 |
+
|
| 7 |
+
Base Model: Qwen 2.5 Instruct 7B
|
| 8 |
+
Fine-tuning Method: LoRA (Low-Rank Adaptation)
|
| 9 |
+
Training Infrastructure: Single NVIDIA A100 GPU
|
| 10 |
+
Training Duration: Approximately 5.4 hours
|
| 11 |
+
Training Dataset: Custom curated dataset for materials analysis
|
| 12 |
+
|
| 13 |
+
Dataset Specifications
|
| 14 |
+
---------------------
|
| 15 |
+
|
| 16 |
+
Total Token Count: 6,441,671
|
| 17 |
+
Total Sample Count: 6,000
|
| 18 |
+
Average Tokens/Sample: 1,073.61
|
| 19 |
+
Dataset Creation: Generated using DeepSeekV3 API
|
| 20 |
+
|
| 21 |
+
Training Configuration
|
| 22 |
+
---------------------
|
| 23 |
+
|
| 24 |
+
LoRA Parameters:
|
| 25 |
+
- Rank: 32
|
| 26 |
+
- Alpha: 64
|
| 27 |
+
- Dropout: 0.1
|
| 28 |
+
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head
|
| 29 |
+
|
| 30 |
+
Training Hyperparameters:
|
| 31 |
+
- Learning Rate: 5e-5
|
| 32 |
+
- Batch Size: 4
|
| 33 |
+
- Gradient Accumulation: 5
|
| 34 |
+
- Effective Batch Size: 20
|
| 35 |
+
- Max Sequence Length: 2048
|
| 36 |
+
- Epochs: 3
|
| 37 |
+
- Warmup Ratio: 0.01
|
| 38 |
+
- Weight Decay: 0.01
|
| 39 |
+
- Max Grad Norm: 1.0
|
| 40 |
+
- LR Scheduler: Cosine
|
| 41 |
+
|
| 42 |
+
Hardware & Environment
|
| 43 |
+
---------------------
|
| 44 |
+
|
| 45 |
+
GPU: NVIDIA A100 SXM4 (40GB)
|
| 46 |
+
Operating System: Ubuntu
|
| 47 |
+
CUDA Version: 11.8
|
| 48 |
+
PyTorch Version: 2.7.0
|
| 49 |
+
Compute Capability: 8.0
|
| 50 |
+
Optimization: FP16, Gradient Checkpointing
|
| 51 |
+
|
| 52 |
+
Training Performance
|
| 53 |
+
---------------------
|
| 54 |
+
|
| 55 |
+
Training Runtime: 5.37 hours (19,348 seconds)
|
| 56 |
+
Train Samples/Second: 0.884
|
| 57 |
+
Train Steps/Second: 0.044
|
| 58 |
+
Training Loss (Final): 0.170
|
| 59 |
+
Validation Loss (Final): 0.136
|
| 60 |
+
Total Training Steps: 855
|