Initial commit
Browse files- .gitattributes +1 -0
- README.md +73 -0
- args.yml +81 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- results.json +1 -0
- tqc-BipedalWalkerHardcore-v3.zip +3 -0
- tqc-BipedalWalkerHardcore-v3/_stable_baselines3_version +1 -0
- tqc-BipedalWalkerHardcore-v3/actor.optimizer.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/critic.optimizer.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/data +122 -0
- tqc-BipedalWalkerHardcore-v3/ent_coef_optimizer.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/policy.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/pytorch_variables.pth +3 -0
- tqc-BipedalWalkerHardcore-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalkerHardcore-v3
|
16 |
+
type: BipedalWalkerHardcore-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 217.41 +/- 130.53
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **BipedalWalkerHardcore-v3**
|
25 |
+
This is a trained model of a **TQC** agent playing **BipedalWalkerHardcore-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
```
|
40 |
+
# Download model and save it into the logs/ folder
|
41 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env BipedalWalkerHardcore-v3 -orga RayanRen -f logs/
|
42 |
+
python enjoy.py --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
|
43 |
+
```
|
44 |
+
|
45 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
46 |
+
```
|
47 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env BipedalWalkerHardcore-v3 -orga RayanRen -f logs/
|
48 |
+
rl_zoo3 enjoy --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
|
49 |
+
```
|
50 |
+
|
51 |
+
## Training (with the RL Zoo)
|
52 |
+
```
|
53 |
+
python train.py --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
|
54 |
+
# Upload the model and generate video (when possible)
|
55 |
+
python -m rl_zoo3.push_to_hub --algo tqc --env BipedalWalkerHardcore-v3 -f logs/ -orga RayanRen
|
56 |
+
```
|
57 |
+
|
58 |
+
## Hyperparameters
|
59 |
+
```python
|
60 |
+
OrderedDict([('batch_size', 256),
|
61 |
+
('buffer_size', 1000000),
|
62 |
+
('ent_coef', 'auto'),
|
63 |
+
('gamma', 0.99),
|
64 |
+
('gradient_steps', 1),
|
65 |
+
('learning_rate', 'lin_7.3e-4'),
|
66 |
+
('learning_starts', 10000),
|
67 |
+
('n_timesteps', 2000000.0),
|
68 |
+
('policy', 'MlpPolicy'),
|
69 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
70 |
+
('tau', 0.01),
|
71 |
+
('train_freq', 1),
|
72 |
+
('normalize', False)])
|
73 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- BipedalWalkerHardcore-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs/
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 3126183778
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - yaml_file
|
81 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - buffer_size
|
5 |
+
- 1000000
|
6 |
+
- - ent_coef
|
7 |
+
- auto
|
8 |
+
- - gamma
|
9 |
+
- 0.99
|
10 |
+
- - gradient_steps
|
11 |
+
- 1
|
12 |
+
- - learning_rate
|
13 |
+
- lin_7.3e-4
|
14 |
+
- - learning_starts
|
15 |
+
- 10000
|
16 |
+
- - n_timesteps
|
17 |
+
- 2000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[400, 300])
|
22 |
+
- - tau
|
23 |
+
- 0.01
|
24 |
+
- - train_freq
|
25 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 217.4140523, "std_reward": 130.5299826560816, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T08:44:48.619235"}
|
tqc-BipedalWalkerHardcore-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62fbb285d854f055578eb60364918c4aeec14f9177196eb2fbe607ba9921fd6a
|
3 |
+
size 6104821
|
tqc-BipedalWalkerHardcore-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
tqc-BipedalWalkerHardcore-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:072f7be3a5cc203a12ac11ec3172322cf901269864b87542cdd6512de5eaa775
|
3 |
+
size 1068061
|
tqc-BipedalWalkerHardcore-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:771fd8dd98d0749d94e13386f9f6e2f27a545db6c32be2af7e66c9def309f9ca
|
3 |
+
size 2240057
|
tqc-BipedalWalkerHardcore-v3/data
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x000001E41A4A23A0>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x000001E41A4A2430>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x000001E41A4A24C0>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x000001E41A4A2550>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x000001E41A4A25E0>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x000001E41A4A2670>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x000001E41A4A2700>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x000001E41A4A2790>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x000001E41A4A2820>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x000001E41A4A4090>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"net_arch": [
|
22 |
+
400,
|
23 |
+
300
|
24 |
+
],
|
25 |
+
"use_sde": false
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
29 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
30 |
+
"dtype": "float32",
|
31 |
+
"_shape": [
|
32 |
+
24
|
33 |
+
],
|
34 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
35 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
36 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
37 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
38 |
+
"_np_random": null
|
39 |
+
},
|
40 |
+
"action_space": {
|
41 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
42 |
+
":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
43 |
+
"dtype": "float32",
|
44 |
+
"_shape": [
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"low": "[-1. -1. -1. -1.]",
|
48 |
+
"high": "[1. 1. 1. 1.]",
|
49 |
+
"bounded_below": "[ True True True True]",
|
50 |
+
"bounded_above": "[ True True True True]",
|
51 |
+
"_np_random": "RandomState(MT19937)"
|
52 |
+
},
|
53 |
+
"n_envs": 1,
|
54 |
+
"num_timesteps": 2000000,
|
55 |
+
"_total_timesteps": 2000000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": 0,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1672295243625109500,
|
60 |
+
"learning_rate": {
|
61 |
+
":type:": "<class 'function'>",
|
62 |
+
":serialized:": "gAWVewMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUjARmdW5jlE0iAUMCAAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
63 |
+
},
|
64 |
+
"tensorboard_log": null,
|
65 |
+
"lr_schedule": {
|
66 |
+
":type:": "<class 'function'>",
|
67 |
+
":serialized:": "gAWVewMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUjARmdW5jlE0iAUMCAAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
68 |
+
},
|
69 |
+
"_last_obs": null,
|
70 |
+
"_last_episode_starts": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
73 |
+
},
|
74 |
+
"_last_original_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAKo7wT4d0Qg9dJgQP7wtQLzW+4E+yzSGv8i0JL976Pg9AACAPwyzST8KH5G+PlVvP6uqKjMAAAAALYjfPgsS4j6A++k+2j74PjhrBz/LyDU/lhBRPwAAgD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4="
|
77 |
+
},
|
78 |
+
"_episode_num": 1823,
|
79 |
+
"use_sde": false,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": 0.0,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKxcq/9oQckCUhpRSlIwBbJRNGgSMAXSUR0DwNmCMDfWMdX2UKGgGaAloD0MIWdqpuRwyckCUhpRSlGgVTfsDaBZHQPA4ZxzT4L11fZQoaAZoCWgPQwhUGcbdoGBxQJSGlFKUaBVNggRoFkdA8DqcMXWOInV9lChoBmgJaA9DCBrggmwZM3JAlIaUUpRoFU0VBGgWR0DwPKFCjk+5dX2UKGgGaAloD0MIDD7NyctPcECUhpRSlGgVTVQFaBZHQPA/PSkUKzB1fZQoaAZoCWgPQwjFWKZfIutxQJSGlFKUaBVNLgRoFkdA8EFCzaGpM3V9lChoBmgJaA9DCIHOpE3VrHJAlIaUUpRoFU3NA2gWR0DwQxVs+3YudX2UKGgGaAloD0MIGlJF8SoockCUhpRSlGgVTR0EaBZHQPBFBM7T2Fp1fZQoaAZoCWgPQwgnnx7bslJyQJSGlFKUaBVNCQRoFkdA8Eb0ihzvJHV9lChoBmgJaA9DCEJfevvzk2JAlIaUUpRoFU2uA2gWR0DwSMam5lOHdX2UKGgGaAloD0MI6zao/dZ4R0CUhpRSlGgVTdAHaBZHQPBMktR/EwZ1fZQoaAZoCWgPQwiCHf8FgrZIwJSGlFKUaBVL72gWR0DwTYb2P1cudX2UKGgGaAloD0MIwAmFCDhfckCUhpRSlGgVTfADaBZHQPBPb3vb48F1fZQoaAZoCWgPQwhhb2JIznNyQJSGlFKUaBVN4QNoFkdA8FFeCeNDMXV9lChoBmgJaA9DCHjUmBDz/nFAlIaUUpRoFU00BGgWR0DwU2J9TxXodX2UKGgGaAloD0MIKbAApswZckCUhpRSlGgVTTYEaBZHQPBVap9hJAd1fZQoaAZoCWgPQwjwvioXagRyQJSGlFKUaBVNGgRoFkdA8FdnlQEZBXV9lChoBmgJaA9DCIkmUMQiR2xAlIaUUpRoFU3QB2gWR0DwWzL0svqUdX2UKGgGaAloD0MICw3EsplWckCUhpRSlGgVTecDaBZHQPBdMHcO9WZ1fZQoaAZoCWgPQwgvou2YOqRxQJSGlFKUaBVNVQRoFkdA8F9QSVjZtnV9lChoBmgJaA9DCH433bLDOXJAlIaUUpRoFU3dA2gWR0DwYSx4pMHsdX2UKGgGaAloD0MIPMH+69xwXECUhpRSlGgVTYADaBZHQPBi0YXWOIZ1fZQoaAZoCWgPQwgBTYQND7tyQJSGlFKUaBVNuQNoFkdA8GSaHGOuJXV9lChoBmgJaA9DCCZw625emnJAlIaUUpRoFU3cA2gWR0DwZmRfgrH3dX2UKGgGaAloD0MIlX7C2e1WckCUhpRSlGgVTfMDaBZHQPBoROExqO91fZQoaAZoCWgPQwj4iQPod+ZgwJSGlFKUaBVN0AdoFkdA8GvmWJiy6nV9lChoBmgJaA9DCPZ5jPJM93FAlIaUUpRoFU0XBGgWR0DwbdfIRh+fdX2UKGgGaAloD0MIPEuQEVCjRMCUhpRSlGgVTSkBaBZHQPBuYEliSaF1fZQoaAZoCWgPQwjT9NkBV95xQJSGlFKUaBVNLQRoFkdA8HBpxUm2LHV9lChoBmgJaA9DCJTai2g7xF/AlIaUUpRoFU3QB2gWR0DwdBRj+717dX2UKGgGaAloD0MIBHRfzmzzcUCUhpRSlGgVTTEEaBZHQPB2DR+SbH91fZQoaAZoCWgPQwhdUyCz80NyQJSGlFKUaBVN5ANoFkdA8Hfd1m4Aj3V9lChoBmgJaA9DCHocBvMXJXJAlIaUUpRoFU0mBGgWR0DwedWNkvsadX2UKGgGaAloD0MIkE3yI74QckCUhpRSlGgVTSwEaBZHQPB7w1DzAet1fZQoaAZoCWgPQwg0FHe8SeNxQJSGlFKUaBVNUQRoFkdA8H5gj/dZaHV9lChoBmgJaA9DCMjqVs+JWHJAlIaUUpRoFU3jA2gWR0DwgDVOGTLXdX2UKGgGaAloD0MITrNAu4PCcUCUhpRSlGgVTVUEaBZHQPCCYD3K0Up1fZQoaAZoCWgPQwghrweT4tVxQJSGlFKUaBVNMQRoFkdA8IRkeqrBCXV9lChoBmgJaA9DCDoeM1BZYHJAlIaUUpRoFU3lA2gWR0DwhklxxT86dX2UKGgGaAloD0MI1EhL5e0HckCUhpRSlGgVTQgEaBZHQPCINPx6OYJ1fZQoaAZoCWgPQwh3n+OjxVNFQJSGlFKUaBVN0AdoFkdA8Iv3WmgrY3V9lChoBmgJaA9DCOUrgZRYB2pAlIaUUpRoFU3QB2gWR0Dwj8Udn004dX2UKGgGaAloD0MIu2HbooyzckCUhpRSlGgVTZkDaBZHQPCRjoNc4YJ1fZQoaAZoCWgPQwhRpWYPdGRyQJSGlFKUaBVNzwNoFkdA8JNXkjHGTHV9lChoBmgJaA9DCDhlbr4R3lxAlIaUUpRoFU3AA2gWR0DwlTeCmdiEdX2UKGgGaAloD0MIRkWcTjJ2ckCUhpRSlGgVTdwDaBZHQPCXEjo/zJ91fZQoaAZoCWgPQwiz74rgfwlyQJSGlFKUaBVNFgRoFkdA8Jj8+y3TeHV9lChoBmgJaA9DCMVx4NWy5nFAlIaUUpRoFU1CBGgWR0DwmwkTrVvudX2UKGgGaAloD0MImUf+YKDpcUCUhpRSlGgVTQ0EaBZHQPCc8Tv8ZUF1fZQoaAZoCWgPQwg095DwPfRxQJSGlFKUaBVNHgRoFkdA8J7tkpVjqnV9lChoBmgJaA9DCF68H7ffdnJAlIaUUpRoFU3MA2gWR0DwoLM0Rvm6dX2UKGgGaAloD0MIIzFBDd+SRMCUhpRSlGgVTdAHaBZHQPCka720zCV1fZQoaAZoCWgPQwgvwhTl0jRyQJSGlFKUaBVN+QNoFkdA8KZXYw/PgXV9lChoBmgJaA9DCDWZ8bYSLnJAlIaUUpRoFU0eBGgWR0DwqFZxmCiAdX2UKGgGaAloD0MIuqP/5VptcUCUhpRSlGgVTaoEaBZHQPCqouzPa+N1fZQoaAZoCWgPQwgprir7rmhyQJSGlFKUaBVNxQNoFkdA8K0iVxGUfXV9lChoBmgJaA9DCB+5Nem2WkxAlIaUUpRoFU1oAmgWR0DwrlYkTpPidX2UKGgGaAloD0MIMGR1q2eocUCUhpRSlGgVTVwEaBZHQPCwYpHf/FR1fZQoaAZoCWgPQwj4qpUJv/5VQJSGlFKUaBVNiQJoFkdA8LGYX003wXV9lChoBmgJaA9DCI8AbhYvajDAlIaUUpRoFU1hBGgWR0Dws7gFOO81dX2UKGgGaAloD0MI8KZbdojYUUCUhpRSlGgVTdAHaBZHQPC3e6Q+2Vp1fZQoaAZoCWgPQwiumueI/ENyQJSGlFKUaBVNDwRoFkdA8Ll0nzg/DHV9lChoBmgJaA9DCIV80LMZL3JAlIaUUpRoFU0FBGgWR0Dwu2jadMCcdX2UKGgGaAloD0MIKhprf2eZXMCUhpRSlGgVTdAHaBZHQPC/J0udwvR1fZQoaAZoCWgPQwgtlExOrX1yQJSGlFKUaBVN5ANoFkdA8MEEd3SrpHV9lChoBmgJaA9DCLOWAtK+hnJAlIaUUpRoFU2xA2gWR0Dwwtf+2mYTdX2UKGgGaAloD0MIKxVUVP1QckCUhpRSlGgVTeYDaBZHQPDEtDNTtLN1fZQoaAZoCWgPQwjuXu6TIxByQJSGlFKUaBVNMARoFkdA8Ma9Z40Mw3V9lChoBmgJaA9DCIC77Ned4kBAlIaUUpRoFU3QB2gWR0Dwyny3i704dX2UKGgGaAloD0MIBTQRNvxVckCUhpRSlGgVTdoDaBZHQPDMYu5mRNh1fZQoaAZoCWgPQwh4QxoVuGtkQJSGlFKUaBVN0AdoFkdA8NA0thAnlXV9lChoBmgJaA9DCOEJvf4kcnJAlIaUUpRoFU3NA2gWR0Dw0gX8B+4LdX2UKGgGaAloD0MI+5XOh2cTYUCUhpRSlGgVTRYEaBZHQPDUASVNYbN1fZQoaAZoCWgPQwiinGhXIR9yQJSGlFKUaBVNGgRoFkdA8NX3F7Qb/HV9lChoBmgJaA9DCNZyZyZYeXJAlIaUUpRoFU3VA2gWR0Dw19NG+sYEdX2UKGgGaAloD0MIiL1QwPZUckCUhpRSlGgVTdQDaBZHQPDZpGwQlKN1fZQoaAZoCWgPQwiUbHU5pSFyQJSGlFKUaBVNDgRoFkdA8NwVY0VJtnV9lChoBmgJaA9DCNsWZTbIOXJAlIaUUpRoFU3dA2gWR0Dw3eqSE12rdX2UKGgGaAloD0MI9vBloogDckCUhpRSlGgVTRkEaBZHQPDgEDdbgTB1fZQoaAZoCWgPQwj/k797B7JyQJSGlFKUaBVNngNoFkdA8OHJBQrMDHV9lChoBmgJaA9DCD5BYrv7fHJAlIaUUpRoFU3WA2gWR0Dw465BZpztdX2UKGgGaAloD0MId0mcFdEIckCUhpRSlGgVTR0EaBZHQPDlpqPdVNp1fZQoaAZoCWgPQwgNchdhCnBqQJSGlFKUaBVN0AdoFkdA8OluFR+BpnV9lChoBmgJaA9DCDPBcK7h83FAlIaUUpRoFU0eBGgWR0Dw62bPkq+bdX2UKGgGaAloD0MI2nOZmgTOcUCUhpRSlGgVTUMEaBZHQPDtdbo1UER1fZQoaAZoCWgPQwim8QuvZCVyQJSGlFKUaBVNGgRoFkdA8O9rWwmmcnV9lChoBmgJaA9DCEinrnwWnnJAlIaUUpRoFU2kA2gWR0Dw8S12QXANdX2UKGgGaAloD0MIo5Ol1ntWckCUhpRSlGgVTQkEaBZHQPDzIii7Ci11fZQoaAZoCWgPQwifq63YHypxQJSGlFKUaBVNpQRoFkdA8PVuXSOR1XV9lChoBmgJaA9DCF9AL9w58nFAlIaUUpRoFU1KBGgWR0Dw93fhsqJ/dX2UKGgGaAloD0MIKbAApgy+ScCUhpRSlGgVTdAHaBZHQPD7NxOZb6h1fZQoaAZoCWgPQwj/s+bH3+RxQJSGlFKUaBVNHARoFkdA8P0257Xxv3V9lChoBmgJaA9DCInt7gH6P3JAlIaUUpRoFU3mA2gWR0Dw/w2feUILdX2UKGgGaAloD0MI2lVI+cmuckCUhpRSlGgVTZYDaBZHQPEA3FjriVB1fZQoaAZoCWgPQwjvkjgr4nByQJSGlFKUaBVN1wNoFkdA8QKzSXY153V9lChoBmgJaA9DCAq+afqsKnJAlIaUUpRoFU0QBGgWR0DxBK03Lmp3dX2UKGgGaAloD0MIlxx3Skd4ckCUhpRSlGgVTbMDaBZHQPEGcFD3M6l1fZQoaAZoCWgPQwhruMg9XfxUwJSGlFKUaBVL3WgWR0DxBtmTER8MdX2UKGgGaAloD0MInDbjNEQRQsCUhpRSlGgVTRwCaBZHQPEH3+zZ6D51fZQoaAZoCWgPQwj7ljldFk9yQJSGlFKUaBVN+QNoFkdA8QnNt21Ul3VlLg=="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 1990000,
|
91 |
+
"buffer_size": 1,
|
92 |
+
"batch_size": 256,
|
93 |
+
"learning_starts": 10000,
|
94 |
+
"tau": 0.01,
|
95 |
+
"gamma": 0.99,
|
96 |
+
"gradient_steps": 1,
|
97 |
+
"optimize_memory_usage": false,
|
98 |
+
"replay_buffer_class": {
|
99 |
+
":type:": "<class 'abc.ABCMeta'>",
|
100 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
101 |
+
"__module__": "stable_baselines3.common.buffers",
|
102 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
103 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x000001E4190DAA60>",
|
104 |
+
"add": "<function ReplayBuffer.add at 0x000001E4190DAAF0>",
|
105 |
+
"sample": "<function ReplayBuffer.sample at 0x000001E4190DAB80>",
|
106 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x000001E4190DAC10>",
|
107 |
+
"__abstractmethods__": "frozenset()",
|
108 |
+
"_abc_impl": "<_abc_data object at 0x000001E4190DC7B0>"
|
109 |
+
},
|
110 |
+
"replay_buffer_kwargs": {},
|
111 |
+
"train_freq": {
|
112 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
113 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
114 |
+
},
|
115 |
+
"use_sde_at_warmup": false,
|
116 |
+
"target_entropy": -4.0,
|
117 |
+
"ent_coef": "auto",
|
118 |
+
"target_update_interval": 1,
|
119 |
+
"top_quantiles_to_drop_per_net": 2,
|
120 |
+
"batch_norm_stats": [],
|
121 |
+
"batch_norm_stats_target": []
|
122 |
+
}
|
tqc-BipedalWalkerHardcore-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27f66bf627f61859a6ba6e024fd3882bfc077d6472be6faa3694ec9f45d1e179
|
3 |
+
size 1507
|
tqc-BipedalWalkerHardcore-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fd8483e5db2d97e4f35b29ccb788b3ab44d92d01d64101b5fe2c1627bad2d45
|
3 |
+
size 2772101
|
tqc-BipedalWalkerHardcore-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9273920ece0f4c28c5e1db629d936ea05522420d5a836722b794cb39ee1c4610
|
3 |
+
size 747
|
tqc-BipedalWalkerHardcore-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Windows-10-10.0.22621-SP0 10.0.22621
|
2 |
+
Python: 3.8.0
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.24.0
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5de32cca3924ce5f6f259d1c06dd72af4f0b22c0eccb8e0892a495e9397a64d8
|
3 |
+
size 59398
|