RayanRen commited on
Commit
91a3c5e
·
1 Parent(s): e051d05

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalkerHardcore-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalkerHardcore-v3
16
+ type: BipedalWalkerHardcore-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 217.41 +/- 130.53
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TQC** Agent playing **BipedalWalkerHardcore-v3**
25
+ This is a trained model of a **TQC** agent playing **BipedalWalkerHardcore-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ ```
40
+ # Download model and save it into the logs/ folder
41
+ python -m rl_zoo3.load_from_hub --algo tqc --env BipedalWalkerHardcore-v3 -orga RayanRen -f logs/
42
+ python enjoy.py --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
43
+ ```
44
+
45
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
46
+ ```
47
+ python -m rl_zoo3.load_from_hub --algo tqc --env BipedalWalkerHardcore-v3 -orga RayanRen -f logs/
48
+ rl_zoo3 enjoy --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
49
+ ```
50
+
51
+ ## Training (with the RL Zoo)
52
+ ```
53
+ python train.py --algo tqc --env BipedalWalkerHardcore-v3 -f logs/
54
+ # Upload the model and generate video (when possible)
55
+ python -m rl_zoo3.push_to_hub --algo tqc --env BipedalWalkerHardcore-v3 -f logs/ -orga RayanRen
56
+ ```
57
+
58
+ ## Hyperparameters
59
+ ```python
60
+ OrderedDict([('batch_size', 256),
61
+ ('buffer_size', 1000000),
62
+ ('ent_coef', 'auto'),
63
+ ('gamma', 0.99),
64
+ ('gradient_steps', 1),
65
+ ('learning_rate', 'lin_7.3e-4'),
66
+ ('learning_starts', 10000),
67
+ ('n_timesteps', 2000000.0),
68
+ ('policy', 'MlpPolicy'),
69
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
70
+ ('tau', 0.01),
71
+ ('train_freq', 1),
72
+ ('normalize', False)])
73
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - BipedalWalkerHardcore-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs/
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3126183778
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 1000000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.99
10
+ - - gradient_steps
11
+ - 1
12
+ - - learning_rate
13
+ - lin_7.3e-4
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 2000000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - tau
23
+ - 0.01
24
+ - - train_freq
25
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 217.4140523, "std_reward": 130.5299826560816, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T08:44:48.619235"}
tqc-BipedalWalkerHardcore-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62fbb285d854f055578eb60364918c4aeec14f9177196eb2fbe607ba9921fd6a
3
+ size 6104821
tqc-BipedalWalkerHardcore-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
tqc-BipedalWalkerHardcore-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:072f7be3a5cc203a12ac11ec3172322cf901269864b87542cdd6512de5eaa775
3
+ size 1068061
tqc-BipedalWalkerHardcore-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:771fd8dd98d0749d94e13386f9f6e2f27a545db6c32be2af7e66c9def309f9ca
3
+ size 2240057
tqc-BipedalWalkerHardcore-v3/data ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x000001E41A4A23A0>",
8
+ "_build": "<function TQCPolicy._build at 0x000001E41A4A2430>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x000001E41A4A24C0>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x000001E41A4A2550>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x000001E41A4A25E0>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x000001E41A4A2670>",
13
+ "forward": "<function TQCPolicy.forward at 0x000001E41A4A2700>",
14
+ "_predict": "<function TQCPolicy._predict at 0x000001E41A4A2790>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x000001E41A4A2820>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x000001E41A4A4090>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "net_arch": [
22
+ 400,
23
+ 300
24
+ ],
25
+ "use_sde": false
26
+ },
27
+ "observation_space": {
28
+ ":type:": "<class 'gym.spaces.box.Box'>",
29
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
30
+ "dtype": "float32",
31
+ "_shape": [
32
+ 24
33
+ ],
34
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
35
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
36
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
37
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
38
+ "_np_random": null
39
+ },
40
+ "action_space": {
41
+ ":type:": "<class 'gym.spaces.box.Box'>",
42
+ ":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
43
+ "dtype": "float32",
44
+ "_shape": [
45
+ 4
46
+ ],
47
+ "low": "[-1. -1. -1. -1.]",
48
+ "high": "[1. 1. 1. 1.]",
49
+ "bounded_below": "[ True True True True]",
50
+ "bounded_above": "[ True True True True]",
51
+ "_np_random": "RandomState(MT19937)"
52
+ },
53
+ "n_envs": 1,
54
+ "num_timesteps": 2000000,
55
+ "_total_timesteps": 2000000,
56
+ "_num_timesteps_at_start": 0,
57
+ "seed": 0,
58
+ "action_noise": null,
59
+ "start_time": 1672295243625109500,
60
+ "learning_rate": {
61
+ ":type:": "<class 'function'>",
62
+ ":serialized:": "gAWVewMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUjARmdW5jlE0iAUMCAAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
63
+ },
64
+ "tensorboard_log": null,
65
+ "lr_schedule": {
66
+ ":type:": "<class 'function'>",
67
+ ":serialized:": "gAWVewMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUjARmdW5jlE0iAUMCAAaUjA1pbml0aWFsX3ZhbHVllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIxEQzpcVXNlcnNccmFpYW5cc291cmNlXHJlcG9zXFJsWm9vXHJsLWJhc2VsaW5lczMtem9vXHJsX3pvbzNcdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
68
+ },
69
+ "_last_obs": null,
70
+ "_last_episode_starts": {
71
+ ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
73
+ },
74
+ "_last_original_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAKo7wT4d0Qg9dJgQP7wtQLzW+4E+yzSGv8i0JL976Pg9AACAPwyzST8KH5G+PlVvP6uqKjMAAAAALYjfPgsS4j6A++k+2j74PjhrBz/LyDU/lhBRPwAAgD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4="
77
+ },
78
+ "_episode_num": 1823,
79
+ "use_sde": false,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": 0.0,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKxcq/9oQckCUhpRSlIwBbJRNGgSMAXSUR0DwNmCMDfWMdX2UKGgGaAloD0MIWdqpuRwyckCUhpRSlGgVTfsDaBZHQPA4ZxzT4L11fZQoaAZoCWgPQwhUGcbdoGBxQJSGlFKUaBVNggRoFkdA8DqcMXWOInV9lChoBmgJaA9DCBrggmwZM3JAlIaUUpRoFU0VBGgWR0DwPKFCjk+5dX2UKGgGaAloD0MIDD7NyctPcECUhpRSlGgVTVQFaBZHQPA/PSkUKzB1fZQoaAZoCWgPQwjFWKZfIutxQJSGlFKUaBVNLgRoFkdA8EFCzaGpM3V9lChoBmgJaA9DCIHOpE3VrHJAlIaUUpRoFU3NA2gWR0DwQxVs+3YudX2UKGgGaAloD0MIGlJF8SoockCUhpRSlGgVTR0EaBZHQPBFBM7T2Fp1fZQoaAZoCWgPQwgnnx7bslJyQJSGlFKUaBVNCQRoFkdA8Eb0ihzvJHV9lChoBmgJaA9DCEJfevvzk2JAlIaUUpRoFU2uA2gWR0DwSMam5lOHdX2UKGgGaAloD0MI6zao/dZ4R0CUhpRSlGgVTdAHaBZHQPBMktR/EwZ1fZQoaAZoCWgPQwiCHf8FgrZIwJSGlFKUaBVL72gWR0DwTYb2P1cudX2UKGgGaAloD0MIwAmFCDhfckCUhpRSlGgVTfADaBZHQPBPb3vb48F1fZQoaAZoCWgPQwhhb2JIznNyQJSGlFKUaBVN4QNoFkdA8FFeCeNDMXV9lChoBmgJaA9DCHjUmBDz/nFAlIaUUpRoFU00BGgWR0DwU2J9TxXodX2UKGgGaAloD0MIKbAApswZckCUhpRSlGgVTTYEaBZHQPBVap9hJAd1fZQoaAZoCWgPQwjwvioXagRyQJSGlFKUaBVNGgRoFkdA8FdnlQEZBXV9lChoBmgJaA9DCIkmUMQiR2xAlIaUUpRoFU3QB2gWR0DwWzL0svqUdX2UKGgGaAloD0MICw3EsplWckCUhpRSlGgVTecDaBZHQPBdMHcO9WZ1fZQoaAZoCWgPQwgvou2YOqRxQJSGlFKUaBVNVQRoFkdA8F9QSVjZtnV9lChoBmgJaA9DCH433bLDOXJAlIaUUpRoFU3dA2gWR0DwYSx4pMHsdX2UKGgGaAloD0MIPMH+69xwXECUhpRSlGgVTYADaBZHQPBi0YXWOIZ1fZQoaAZoCWgPQwgBTYQND7tyQJSGlFKUaBVNuQNoFkdA8GSaHGOuJXV9lChoBmgJaA9DCCZw625emnJAlIaUUpRoFU3cA2gWR0DwZmRfgrH3dX2UKGgGaAloD0MIlX7C2e1WckCUhpRSlGgVTfMDaBZHQPBoROExqO91fZQoaAZoCWgPQwj4iQPod+ZgwJSGlFKUaBVN0AdoFkdA8GvmWJiy6nV9lChoBmgJaA9DCPZ5jPJM93FAlIaUUpRoFU0XBGgWR0DwbdfIRh+fdX2UKGgGaAloD0MIPEuQEVCjRMCUhpRSlGgVTSkBaBZHQPBuYEliSaF1fZQoaAZoCWgPQwjT9NkBV95xQJSGlFKUaBVNLQRoFkdA8HBpxUm2LHV9lChoBmgJaA9DCJTai2g7xF/AlIaUUpRoFU3QB2gWR0DwdBRj+717dX2UKGgGaAloD0MIBHRfzmzzcUCUhpRSlGgVTTEEaBZHQPB2DR+SbH91fZQoaAZoCWgPQwhdUyCz80NyQJSGlFKUaBVN5ANoFkdA8Hfd1m4Aj3V9lChoBmgJaA9DCHocBvMXJXJAlIaUUpRoFU0mBGgWR0DwedWNkvsadX2UKGgGaAloD0MIkE3yI74QckCUhpRSlGgVTSwEaBZHQPB7w1DzAet1fZQoaAZoCWgPQwg0FHe8SeNxQJSGlFKUaBVNUQRoFkdA8H5gj/dZaHV9lChoBmgJaA9DCMjqVs+JWHJAlIaUUpRoFU3jA2gWR0DwgDVOGTLXdX2UKGgGaAloD0MITrNAu4PCcUCUhpRSlGgVTVUEaBZHQPCCYD3K0Up1fZQoaAZoCWgPQwghrweT4tVxQJSGlFKUaBVNMQRoFkdA8IRkeqrBCXV9lChoBmgJaA9DCDoeM1BZYHJAlIaUUpRoFU3lA2gWR0DwhklxxT86dX2UKGgGaAloD0MI1EhL5e0HckCUhpRSlGgVTQgEaBZHQPCINPx6OYJ1fZQoaAZoCWgPQwh3n+OjxVNFQJSGlFKUaBVN0AdoFkdA8Iv3WmgrY3V9lChoBmgJaA9DCOUrgZRYB2pAlIaUUpRoFU3QB2gWR0Dwj8Udn004dX2UKGgGaAloD0MIu2HbooyzckCUhpRSlGgVTZkDaBZHQPCRjoNc4YJ1fZQoaAZoCWgPQwhRpWYPdGRyQJSGlFKUaBVNzwNoFkdA8JNXkjHGTHV9lChoBmgJaA9DCDhlbr4R3lxAlIaUUpRoFU3AA2gWR0DwlTeCmdiEdX2UKGgGaAloD0MIRkWcTjJ2ckCUhpRSlGgVTdwDaBZHQPCXEjo/zJ91fZQoaAZoCWgPQwiz74rgfwlyQJSGlFKUaBVNFgRoFkdA8Jj8+y3TeHV9lChoBmgJaA9DCMVx4NWy5nFAlIaUUpRoFU1CBGgWR0DwmwkTrVvudX2UKGgGaAloD0MImUf+YKDpcUCUhpRSlGgVTQ0EaBZHQPCc8Tv8ZUF1fZQoaAZoCWgPQwg095DwPfRxQJSGlFKUaBVNHgRoFkdA8J7tkpVjqnV9lChoBmgJaA9DCF68H7ffdnJAlIaUUpRoFU3MA2gWR0DwoLM0Rvm6dX2UKGgGaAloD0MIIzFBDd+SRMCUhpRSlGgVTdAHaBZHQPCka720zCV1fZQoaAZoCWgPQwgvwhTl0jRyQJSGlFKUaBVN+QNoFkdA8KZXYw/PgXV9lChoBmgJaA9DCDWZ8bYSLnJAlIaUUpRoFU0eBGgWR0DwqFZxmCiAdX2UKGgGaAloD0MIuqP/5VptcUCUhpRSlGgVTaoEaBZHQPCqouzPa+N1fZQoaAZoCWgPQwgprir7rmhyQJSGlFKUaBVNxQNoFkdA8K0iVxGUfXV9lChoBmgJaA9DCB+5Nem2WkxAlIaUUpRoFU1oAmgWR0DwrlYkTpPidX2UKGgGaAloD0MIMGR1q2eocUCUhpRSlGgVTVwEaBZHQPCwYpHf/FR1fZQoaAZoCWgPQwj4qpUJv/5VQJSGlFKUaBVNiQJoFkdA8LGYX003wXV9lChoBmgJaA9DCI8AbhYvajDAlIaUUpRoFU1hBGgWR0Dws7gFOO81dX2UKGgGaAloD0MI8KZbdojYUUCUhpRSlGgVTdAHaBZHQPC3e6Q+2Vp1fZQoaAZoCWgPQwiumueI/ENyQJSGlFKUaBVNDwRoFkdA8Ll0nzg/DHV9lChoBmgJaA9DCIV80LMZL3JAlIaUUpRoFU0FBGgWR0Dwu2jadMCcdX2UKGgGaAloD0MIKhprf2eZXMCUhpRSlGgVTdAHaBZHQPC/J0udwvR1fZQoaAZoCWgPQwgtlExOrX1yQJSGlFKUaBVN5ANoFkdA8MEEd3SrpHV9lChoBmgJaA9DCLOWAtK+hnJAlIaUUpRoFU2xA2gWR0Dwwtf+2mYTdX2UKGgGaAloD0MIKxVUVP1QckCUhpRSlGgVTeYDaBZHQPDEtDNTtLN1fZQoaAZoCWgPQwjuXu6TIxByQJSGlFKUaBVNMARoFkdA8Ma9Z40Mw3V9lChoBmgJaA9DCIC77Ned4kBAlIaUUpRoFU3QB2gWR0Dwyny3i704dX2UKGgGaAloD0MIBTQRNvxVckCUhpRSlGgVTdoDaBZHQPDMYu5mRNh1fZQoaAZoCWgPQwh4QxoVuGtkQJSGlFKUaBVN0AdoFkdA8NA0thAnlXV9lChoBmgJaA9DCOEJvf4kcnJAlIaUUpRoFU3NA2gWR0Dw0gX8B+4LdX2UKGgGaAloD0MI+5XOh2cTYUCUhpRSlGgVTRYEaBZHQPDUASVNYbN1fZQoaAZoCWgPQwiinGhXIR9yQJSGlFKUaBVNGgRoFkdA8NX3F7Qb/HV9lChoBmgJaA9DCNZyZyZYeXJAlIaUUpRoFU3VA2gWR0Dw19NG+sYEdX2UKGgGaAloD0MIiL1QwPZUckCUhpRSlGgVTdQDaBZHQPDZpGwQlKN1fZQoaAZoCWgPQwiUbHU5pSFyQJSGlFKUaBVNDgRoFkdA8NwVY0VJtnV9lChoBmgJaA9DCNsWZTbIOXJAlIaUUpRoFU3dA2gWR0Dw3eqSE12rdX2UKGgGaAloD0MI9vBloogDckCUhpRSlGgVTRkEaBZHQPDgEDdbgTB1fZQoaAZoCWgPQwj/k797B7JyQJSGlFKUaBVNngNoFkdA8OHJBQrMDHV9lChoBmgJaA9DCD5BYrv7fHJAlIaUUpRoFU3WA2gWR0Dw465BZpztdX2UKGgGaAloD0MId0mcFdEIckCUhpRSlGgVTR0EaBZHQPDlpqPdVNp1fZQoaAZoCWgPQwgNchdhCnBqQJSGlFKUaBVN0AdoFkdA8OluFR+BpnV9lChoBmgJaA9DCDPBcK7h83FAlIaUUpRoFU0eBGgWR0Dw62bPkq+bdX2UKGgGaAloD0MI2nOZmgTOcUCUhpRSlGgVTUMEaBZHQPDtdbo1UER1fZQoaAZoCWgPQwim8QuvZCVyQJSGlFKUaBVNGgRoFkdA8O9rWwmmcnV9lChoBmgJaA9DCEinrnwWnnJAlIaUUpRoFU2kA2gWR0Dw8S12QXANdX2UKGgGaAloD0MIo5Ol1ntWckCUhpRSlGgVTQkEaBZHQPDzIii7Ci11fZQoaAZoCWgPQwifq63YHypxQJSGlFKUaBVNpQRoFkdA8PVuXSOR1XV9lChoBmgJaA9DCF9AL9w58nFAlIaUUpRoFU1KBGgWR0Dw93fhsqJ/dX2UKGgGaAloD0MIKbAApgy+ScCUhpRSlGgVTdAHaBZHQPD7NxOZb6h1fZQoaAZoCWgPQwj/s+bH3+RxQJSGlFKUaBVNHARoFkdA8P0257Xxv3V9lChoBmgJaA9DCInt7gH6P3JAlIaUUpRoFU3mA2gWR0Dw/w2feUILdX2UKGgGaAloD0MI2lVI+cmuckCUhpRSlGgVTZYDaBZHQPEA3FjriVB1fZQoaAZoCWgPQwjvkjgr4nByQJSGlFKUaBVN1wNoFkdA8QKzSXY153V9lChoBmgJaA9DCAq+afqsKnJAlIaUUpRoFU0QBGgWR0DxBK03Lmp3dX2UKGgGaAloD0MIlxx3Skd4ckCUhpRSlGgVTbMDaBZHQPEGcFD3M6l1fZQoaAZoCWgPQwhruMg9XfxUwJSGlFKUaBVL3WgWR0DxBtmTER8MdX2UKGgGaAloD0MInDbjNEQRQsCUhpRSlGgVTRwCaBZHQPEH3+zZ6D51fZQoaAZoCWgPQwj7ljldFk9yQJSGlFKUaBVN+QNoFkdA8QnNt21Ul3VlLg=="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 1990000,
91
+ "buffer_size": 1,
92
+ "batch_size": 256,
93
+ "learning_starts": 10000,
94
+ "tau": 0.01,
95
+ "gamma": 0.99,
96
+ "gradient_steps": 1,
97
+ "optimize_memory_usage": false,
98
+ "replay_buffer_class": {
99
+ ":type:": "<class 'abc.ABCMeta'>",
100
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
101
+ "__module__": "stable_baselines3.common.buffers",
102
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
103
+ "__init__": "<function ReplayBuffer.__init__ at 0x000001E4190DAA60>",
104
+ "add": "<function ReplayBuffer.add at 0x000001E4190DAAF0>",
105
+ "sample": "<function ReplayBuffer.sample at 0x000001E4190DAB80>",
106
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x000001E4190DAC10>",
107
+ "__abstractmethods__": "frozenset()",
108
+ "_abc_impl": "<_abc_data object at 0x000001E4190DC7B0>"
109
+ },
110
+ "replay_buffer_kwargs": {},
111
+ "train_freq": {
112
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
113
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
114
+ },
115
+ "use_sde_at_warmup": false,
116
+ "target_entropy": -4.0,
117
+ "ent_coef": "auto",
118
+ "target_update_interval": 1,
119
+ "top_quantiles_to_drop_per_net": 2,
120
+ "batch_norm_stats": [],
121
+ "batch_norm_stats_target": []
122
+ }
tqc-BipedalWalkerHardcore-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27f66bf627f61859a6ba6e024fd3882bfc077d6472be6faa3694ec9f45d1e179
3
+ size 1507
tqc-BipedalWalkerHardcore-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd8483e5db2d97e4f35b29ccb788b3ab44d92d01d64101b5fe2c1627bad2d45
3
+ size 2772101
tqc-BipedalWalkerHardcore-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9273920ece0f4c28c5e1db629d936ea05522420d5a836722b794cb39ee1c4610
3
+ size 747
tqc-BipedalWalkerHardcore-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.22621-SP0 10.0.22621
2
+ Python: 3.8.0
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.24.0
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5de32cca3924ce5f6f259d1c06dd72af4f0b22c0eccb8e0892a495e9397a64d8
3
+ size 59398