Upload PPO LunarLander-v2 trained agent
Browse files- P1-lunarlander-v2.zip +3 -0
- P1-lunarlander-v2/_stable_baselines3_version +1 -0
- P1-lunarlander-v2/data +94 -0
- P1-lunarlander-v2/policy.optimizer.pth +3 -0
- P1-lunarlander-v2/policy.pth +3 -0
- P1-lunarlander-v2/pytorch_variables.pth +3 -0
- P1-lunarlander-v2/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
P1-lunarlander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8dab5e81b12c9df80dc71fd7a2da6544351f19c1db841b4dfe32073890a3533
|
3 |
+
size 147137
|
P1-lunarlander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
P1-lunarlander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fa3081b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fa3081c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fa3081cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fa3081d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9fa3081dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9fa3081e60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fa3081ef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9fa3081f80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fa3082050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fa30820e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fa3082170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9fa30c6d20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1659304612.756129,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC7YD6feo27ZsTMOiKs+bewfgu9m0HtuQAAgD8AAIA/RlE8vhJ0xTzdswg+MugivhzZRrt41R88AAAAAAAAAAAz1s08ewCCuoJjhro+twe1G8gZu1b5mjkAAIA/AACAP0Kelb798zC9Zs/2OMUrAjiylJs+6GgkuAAAgD8AAIA/pjrZPZIJXT8dQEk9/VSyvkwCaj3WTgW9AAAAAAAAAADzRZK9jw5Tut4fMLi1gSGzeGKGueugTzcAAIA/AACAP603Vj4sd4g8UAfTuvFCKrmZhRc+Dd4COgAAgD8AAIA/jambvY/afbqtOpU6/LxcN9of8bruHD+5AACAPwAAgD/myP899kwjurqiUDvB+1C4DatFu/LkPbkAAIA/AACAP7MJI77cIwW803X/ugLfyriawIM9fwMmOgAAgD8AAIA/01x3vpJK/Dw8yIS7LkBQvlc1tb6Dgz6/AACAPwAAgD+adQk8PJqFP4IyYzwWJjW/ck0MPRsaTbwAAAAAAAAAADM94T14uqs/y2MWP7BPn74XFbw9XxSfPgAAAAAAAAAAM5VuvpLQ0DxZ+iE7KVrDuWo5Zb5qOb65AACAPwAAgD9DT5i+YSFwPg4UDj5UkWa+40yHvNOX7bwAAAAAAAAAACilkL6Be7q8CNtSO4Ciozmbdyc+MUKCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzH7d6c6wVkCUhpRSlIwBbJRN6AOMAXSUR0CN5+Od5IH1dX2UKGgGaAloD0MIMjz2s1gmYkCUhpRSlGgVTegDaBZHQI3091B+nZV1fZQoaAZoCWgPQwjdCfZfZ0piQJSGlFKUaBVN6ANoFkdAjg3Ifr8iwHV9lChoBmgJaA9DCASQ2sTJSFpAlIaUUpRoFU3oA2gWR0COEtgjyFwldX2UKGgGaAloD0MIIsK/CBq+XUCUhpRSlGgVTegDaBZHQI4XuP91loV1fZQoaAZoCWgPQwgaMh6lEtpZQJSGlFKUaBVN6ANoFkdAjhinh0hePnV9lChoBmgJaA9DCLiswmYAt2JAlIaUUpRoFU3oA2gWR0COKzCyhSLqdX2UKGgGaAloD0MIW1t4Xqo/ZECUhpRSlGgVTegDaBZHQI4wBxzaK1p1fZQoaAZoCWgPQwhRhxVu+XdeQJSGlFKUaBVN6ANoFkdAjkCnxaxHG3V9lChoBmgJaA9DCJjCg2bXvFpAlIaUUpRoFU3oA2gWR0COTTL26ClKdX2UKGgGaAloD0MIfIDuy5kCWUCUhpRSlGgVTegDaBZHQI5NqSNfgJl1fZQoaAZoCWgPQwheDrvvGANdQJSGlFKUaBVN6ANoFkdAjlawvQF9r3V9lChoBmgJaA9DCPPGSWHee15AlIaUUpRoFU3oA2gWR0COY14CZF5OdX2UKGgGaAloD0MIW+m12Vj7WkCUhpRSlGgVTegDaBZHQI5lEghbGFV1fZQoaAZoCWgPQwiXcOgtHt5dQJSGlFKUaBVN6ANoFkdAjmj6RISUT3V9lChoBmgJaA9DCBOZucDlaF5AlIaUUpRoFU3oA2gWR0CObmjQiRnwdX2UKGgGaAloD0MI6Gor9heUYUCUhpRSlGgVTegDaBZHQI52D/ZM+Nd1fZQoaAZoCWgPQwgeN/xuOjBiQJSGlFKUaBVN6ANoFkdAjoKDz7MxGnV9lChoBmgJaA9DCAwBwLFnHyBAlIaUUpRoFU06AWgWR0COmKoNNJvpdX2UKGgGaAloD0MIZkrrb4k6YECUhpRSlGgVTegDaBZHQI6aXfdhy811fZQoaAZoCWgPQwjAXfbrTodhQJSGlFKUaBVN6ANoFkdAjp7qQq7ROXV9lChoBmgJaA9DCHKIuDmVdF5AlIaUUpRoFU3oA2gWR0COo2xMWXTmdX2UKGgGaAloD0MIqWxYU1kXV0CUhpRSlGgVTegDaBZHQI6kZFCswL51fZQoaAZoCWgPQwgJFRxeEKJfQJSGlFKUaBVN6ANoFkdAj3P5T6zmfXV9lChoBmgJaA9DCEkRGVbxa2FAlIaUUpRoFU3oA2gWR0CPeE7zTWoWdX2UKGgGaAloD0MIezGUE+2CMkCUhpRSlGgVTQoBaBZHQI98AEpy6tl1fZQoaAZoCWgPQwijeQCLfLdiQJSGlFKUaBVN6ANoFkdAj4ZzX8O09nV9lChoBmgJaA9DCNap8j0j0V5AlIaUUpRoFU3oA2gWR0CPkVO5avA5dX2UKGgGaAloD0MIPxnjw+xnWkCUhpRSlGgVTegDaBZHQI+RuXNTtLN1fZQoaAZoCWgPQwi+pZwv9ohaQJSGlFKUaBVN6ANoFkdAj5ohMzuWr3V9lChoBmgJaA9DCJSjAFEwUmFAlIaUUpRoFU3oA2gWR0CPpatcv/R3dX2UKGgGaAloD0MIwFlKlpNcWkCUhpRSlGgVTegDaBZHQI+nUGVzIWB1fZQoaAZoCWgPQwgvNNdppP1cQJSGlFKUaBVN6ANoFkdAj6rTXBguy3V9lChoBmgJaA9DCM8yi1BsCl9AlIaUUpRoFU3oA2gWR0CPtuVtXPqtdX2UKGgGaAloD0MIgLdAguKNQkCUhpRSlGgVTZYBaBZHQI+5dzMibDx1fZQoaAZoCWgPQwjMlqyKcC5iQJSGlFKUaBVN6ANoFkdAj8KUmMOwxHV9lChoBmgJaA9DCE7U0twKrmJAlIaUUpRoFU3oA2gWR0CP1wBRyfcvdX2UKGgGaAloD0MI3WCowwrnHECUhpRSlGgVS/9oFkdAj9nQK0D2anV9lChoBmgJaA9DCBDn4QSmPV5AlIaUUpRoFU3oA2gWR0CP3LTG5tm+dX2UKGgGaAloD0MIFeKRePlkZUCUhpRSlGgVTegDaBZHQI/hDs+mm+F1fZQoaAZoCWgPQwgYCAJk6HJjQJSGlFKUaBVN6ANoFkdAj+HlWGRFJHV9lChoBmgJaA9DCEgXm1YKplpAlIaUUpRoFU3oA2gWR0CP8odn003wdX2UKGgGaAloD0MItHHEWnxOY0CUhpRSlGgVTegDaBZHQI/2rYh+vyN1fZQoaAZoCWgPQwhXlX1XhDZiQJSGlFKUaBVN6ANoFkdAj/ofL1VYIXV9lChoBmgJaA9DCMHG9e/6X19AlIaUUpRoFU3oA2gWR0CQB6BYFJQMdX2UKGgGaAloD0MIzGPNyKDPYECUhpRSlGgVTegDaBZHQJAH0mVqveR1fZQoaAZoCWgPQwiyvRb03qhaQJSGlFKUaBVN6ANoFkdAkAvEzTF2m3V9lChoBmgJaA9DCCgrhqsDW11AlIaUUpRoFU3oA2gWR0CQEVDlHSWrdX2UKGgGaAloD0MIjPUNTG6pXECUhpRSlGgVTegDaBZHQJASDKvFFUh1fZQoaAZoCWgPQwhxHeOKi01gQJSGlFKUaBVN6ANoFkdAkBOyPdVNpXV9lChoBmgJaA9DCMiyYOIPkGFAlIaUUpRoFU3oA2gWR0CQGXQHiWE9dX2UKGgGaAloD0MIe6Lrwg/eOECUhpRSlGgVTQ8BaBZHQJAb/AJswcp1fZQoaAZoCWgPQwgAqyNHugljQJSGlFKUaBVN6ANoFkdAkB+iXt0FKXV9lChoBmgJaA9DCAWHF0SkHl9AlIaUUpRoFU3oA2gWR0CQKs1f3N9qdX2UKGgGaAloD0MIbqRskbSCX0CUhpRSlGgVTegDaBZHQJAsYiSq2jR1fZQoaAZoCWgPQwgzGCMShXFbQJSGlFKUaBVN6ANoFkdAkC4Lf1pTM3V9lChoBmgJaA9DCBEebRwxgWFAlIaUUpRoFU3oA2gWR0CQMEQ2/BWQdX2UKGgGaAloD0MIbk+Q2O4VY0CUhpRSlGgVTegDaBZHQJAwtuO0b991fZQoaAZoCWgPQwhlj1AzpGtgQJSGlFKUaBVN6ANoFkdAkDhdr433pXV9lChoBmgJaA9DCCQJwhVQNmBAlIaUUpRoFU3oA2gWR0CQmkI065oXdX2UKGgGaAloD0MIGOqwwi2OYUCUhpRSlGgVTegDaBZHQJCcA1l5GBp1fZQoaAZoCWgPQwiSBre1RXNwQJSGlFKUaBVNpQJoFkdAkKTJHNHH3nV9lChoBmgJaA9DCPmjqDN3iGFAlIaUUpRoFU3oA2gWR0CQplEHMUypdX2UKGgGaAloD0MI1PNuLKjQYkCUhpRSlGgVTegDaBZHQJCmgJHAh0R1fZQoaAZoCWgPQwgkm6vmOWZeQJSGlFKUaBVN6ANoFkdAkLAHOryUcHV9lChoBmgJaA9DCCZuFcRAeF9AlIaUUpRoFU3oA2gWR0CQsM5mAbyZdX2UKGgGaAloD0MIYAK37ubfSECUhpRSlGgVS7xoFkdAkLH6ifxtpHV9lChoBmgJaA9DCHy3eeMkDGJAlIaUUpRoFU3oA2gWR0CQsnXBP9DQdX2UKGgGaAloD0MI0uEhjJ/3akCUhpRSlGgVTa8DaBZHQJC6eieumrN1fZQoaAZoCWgPQwi7tUyG4zZjQJSGlFKUaBVN6ANoFkdAkLp9E9dNWXV9lChoBmgJaA9DCE93nnhO82hAlIaUUpRoFU2BAWgWR0CQu5plz2eydX2UKGgGaAloD0MI/3dEheqwWECUhpRSlGgVTegDaBZHQJDHRI6Kcd51fZQoaAZoCWgPQwhqbK8FvdJiQJSGlFKUaBVN6ANoFkdAkMiO23KB/nV9lChoBmgJaA9DCHJSmPc4hlxAlIaUUpRoFU3oA2gWR0CQydcd5prUdX2UKGgGaAloD0MI1sdD3127ZUCUhpRSlGgVTegDaBZHQJDLq9kBjnV1fZQoaAZoCWgPQwiT/IhfsVxdQJSGlFKUaBVN6ANoFkdAkMwIKQaJh3V9lChoBmgJaA9DCG/YtiizN2NAlIaUUpRoFU3oA2gWR0CQ0pjRlYlqdX2UKGgGaAloD0MI9aJ2vwokZECUhpRSlGgVTegDaBZHQJDUZPfsNUh1fZQoaAZoCWgPQwhCQL6ECpYqQJSGlFKUaBVL2GgWR0CQ1PtD2JzldX2UKGgGaAloD0MIwaikTsBuZECUhpRSlGgVTegDaBZHQJDV2OmzjWF1fZQoaAZoCWgPQwixFwrYDkRsQJSGlFKUaBVNPAFoFkdAkNfDA31jAnV9lChoBmgJaA9DCKq4cYt5iWNAlIaUUpRoFU3oA2gWR0CQ3jtKZlWfdX2UKGgGaAloD0MImfOMfUn2YECUhpRSlGgVTegDaBZHQJDnkvcrRSh1fZQoaAZoCWgPQwjI68Gk+OxhQJSGlFKUaBVN6ANoFkdAkOhbBfrrxHV9lChoBmgJaA9DCFhVL7/TkmRAlIaUUpRoFU3oA2gWR0CQ6X2HtWuHdX2UKGgGaAloD0MIKO54k9/ZXkCUhpRSlGgVTegDaBZHQJDp/JSzgMt1fZQoaAZoCWgPQwjFGi5yTy83QJSGlFKUaBVNHgFoFkdAkO7GldkauXV9lChoBmgJaA9DCFGIgEOo82VAlIaUUpRoFU3oA2gWR0CQ8da1TisGdX2UKGgGaAloD0MI2GFM+nu3X0CUhpRSlGgVTegDaBZHQJDx2SZBsyl1fZQoaAZoCWgPQwhhpu1f2V9sQJSGlFKUaBVNTgJoFkdAkPLKwljVhHV9lChoBmgJaA9DCHFUbqKWrWJAlIaUUpRoFU3oA2gWR0CQ8ukMTewcdX2UKGgGaAloD0MIWYtPATAKbECUhpRSlGgVTSQBaBZHQJD4XHAAQxx1fZQoaAZoCWgPQwhNvW4RmBxqQJSGlFKUaBVNRQFoFkdAkPvojW07bXV9lChoBmgJaA9DCKBU+3S8dmdAlIaUUpRoFU3oA2gWR0CQ/vbMX7+DdX2UKGgGaAloD0MIBoAqbtzzUkCUhpRSlGgVTegDaBZHQJECUY3vQWx1fZQoaAZoCWgPQwgI51PHKv9fQJSGlFKUaBVN6ANoFkdAkQK4sqaw2XV9lChoBmgJaA9DCDKs4o3M1zlAlIaUUpRoFUvMaBZHQJEEV+5OJtV1fZQoaAZoCWgPQwid9SnHZOkoQJSGlFKUaBVL8mgWR0CRCjNBWxQjdX2UKGgGaAloD0MIo1wav/BJXkCUhpRSlGgVTegDaBZHQJEMUnXumaZ1fZQoaAZoCWgPQwjjiLX4FM9iQJSGlFKUaBVN6ANoFkdAkQ0HF98Z1nVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
P1-lunarlander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90a3e222d0d01e2dcced5be27f0112bff78a1f5f84f115b6595deb7b871d32b8
|
3 |
+
size 87865
|
P1-lunarlander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27000152342444b122ac09daea38440189326b0b91df6b10b90ac1158b6cb4d1
|
3 |
+
size 43201
|
P1-lunarlander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
P1-lunarlander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 158.13 +/- 103.98
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fa3081b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fa3081c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fa3081cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fa3081d40>", "_build": "<function ActorCriticPolicy._build at 0x7f9fa3081dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9fa3081e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fa3081ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9fa3081f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fa3082050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fa30820e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fa3082170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9fa30c6d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659304612.756129, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC7YD6feo27ZsTMOiKs+bewfgu9m0HtuQAAgD8AAIA/RlE8vhJ0xTzdswg+MugivhzZRrt41R88AAAAAAAAAAAz1s08ewCCuoJjhro+twe1G8gZu1b5mjkAAIA/AACAP0Kelb798zC9Zs/2OMUrAjiylJs+6GgkuAAAgD8AAIA/pjrZPZIJXT8dQEk9/VSyvkwCaj3WTgW9AAAAAAAAAADzRZK9jw5Tut4fMLi1gSGzeGKGueugTzcAAIA/AACAP603Vj4sd4g8UAfTuvFCKrmZhRc+Dd4COgAAgD8AAIA/jambvY/afbqtOpU6/LxcN9of8bruHD+5AACAPwAAgD/myP899kwjurqiUDvB+1C4DatFu/LkPbkAAIA/AACAP7MJI77cIwW803X/ugLfyriawIM9fwMmOgAAgD8AAIA/01x3vpJK/Dw8yIS7LkBQvlc1tb6Dgz6/AACAPwAAgD+adQk8PJqFP4IyYzwWJjW/ck0MPRsaTbwAAAAAAAAAADM94T14uqs/y2MWP7BPn74XFbw9XxSfPgAAAAAAAAAAM5VuvpLQ0DxZ+iE7KVrDuWo5Zb5qOb65AACAPwAAgD9DT5i+YSFwPg4UDj5UkWa+40yHvNOX7bwAAAAAAAAAACilkL6Be7q8CNtSO4Ciozmbdyc+MUKCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzH7d6c6wVkCUhpRSlIwBbJRN6AOMAXSUR0CN5+Od5IH1dX2UKGgGaAloD0MIMjz2s1gmYkCUhpRSlGgVTegDaBZHQI3091B+nZV1fZQoaAZoCWgPQwjdCfZfZ0piQJSGlFKUaBVN6ANoFkdAjg3Ifr8iwHV9lChoBmgJaA9DCASQ2sTJSFpAlIaUUpRoFU3oA2gWR0COEtgjyFwldX2UKGgGaAloD0MIIsK/CBq+XUCUhpRSlGgVTegDaBZHQI4XuP91loV1fZQoaAZoCWgPQwgaMh6lEtpZQJSGlFKUaBVN6ANoFkdAjhinh0hePnV9lChoBmgJaA9DCLiswmYAt2JAlIaUUpRoFU3oA2gWR0COKzCyhSLqdX2UKGgGaAloD0MIW1t4Xqo/ZECUhpRSlGgVTegDaBZHQI4wBxzaK1p1fZQoaAZoCWgPQwhRhxVu+XdeQJSGlFKUaBVN6ANoFkdAjkCnxaxHG3V9lChoBmgJaA9DCJjCg2bXvFpAlIaUUpRoFU3oA2gWR0COTTL26ClKdX2UKGgGaAloD0MIfIDuy5kCWUCUhpRSlGgVTegDaBZHQI5NqSNfgJl1fZQoaAZoCWgPQwheDrvvGANdQJSGlFKUaBVN6ANoFkdAjlawvQF9r3V9lChoBmgJaA9DCPPGSWHee15AlIaUUpRoFU3oA2gWR0COY14CZF5OdX2UKGgGaAloD0MIW+m12Vj7WkCUhpRSlGgVTegDaBZHQI5lEghbGFV1fZQoaAZoCWgPQwiXcOgtHt5dQJSGlFKUaBVN6ANoFkdAjmj6RISUT3V9lChoBmgJaA9DCBOZucDlaF5AlIaUUpRoFU3oA2gWR0CObmjQiRnwdX2UKGgGaAloD0MI6Gor9heUYUCUhpRSlGgVTegDaBZHQI52D/ZM+Nd1fZQoaAZoCWgPQwgeN/xuOjBiQJSGlFKUaBVN6ANoFkdAjoKDz7MxGnV9lChoBmgJaA9DCAwBwLFnHyBAlIaUUpRoFU06AWgWR0COmKoNNJvpdX2UKGgGaAloD0MIZkrrb4k6YECUhpRSlGgVTegDaBZHQI6aXfdhy811fZQoaAZoCWgPQwjAXfbrTodhQJSGlFKUaBVN6ANoFkdAjp7qQq7ROXV9lChoBmgJaA9DCHKIuDmVdF5AlIaUUpRoFU3oA2gWR0COo2xMWXTmdX2UKGgGaAloD0MIqWxYU1kXV0CUhpRSlGgVTegDaBZHQI6kZFCswL51fZQoaAZoCWgPQwgJFRxeEKJfQJSGlFKUaBVN6ANoFkdAj3P5T6zmfXV9lChoBmgJaA9DCEkRGVbxa2FAlIaUUpRoFU3oA2gWR0CPeE7zTWoWdX2UKGgGaAloD0MIezGUE+2CMkCUhpRSlGgVTQoBaBZHQI98AEpy6tl1fZQoaAZoCWgPQwijeQCLfLdiQJSGlFKUaBVN6ANoFkdAj4ZzX8O09nV9lChoBmgJaA9DCNap8j0j0V5AlIaUUpRoFU3oA2gWR0CPkVO5avA5dX2UKGgGaAloD0MIPxnjw+xnWkCUhpRSlGgVTegDaBZHQI+RuXNTtLN1fZQoaAZoCWgPQwi+pZwv9ohaQJSGlFKUaBVN6ANoFkdAj5ohMzuWr3V9lChoBmgJaA9DCJSjAFEwUmFAlIaUUpRoFU3oA2gWR0CPpatcv/R3dX2UKGgGaAloD0MIwFlKlpNcWkCUhpRSlGgVTegDaBZHQI+nUGVzIWB1fZQoaAZoCWgPQwgvNNdppP1cQJSGlFKUaBVN6ANoFkdAj6rTXBguy3V9lChoBmgJaA9DCM8yi1BsCl9AlIaUUpRoFU3oA2gWR0CPtuVtXPqtdX2UKGgGaAloD0MIgLdAguKNQkCUhpRSlGgVTZYBaBZHQI+5dzMibDx1fZQoaAZoCWgPQwjMlqyKcC5iQJSGlFKUaBVN6ANoFkdAj8KUmMOwxHV9lChoBmgJaA9DCE7U0twKrmJAlIaUUpRoFU3oA2gWR0CP1wBRyfcvdX2UKGgGaAloD0MI3WCowwrnHECUhpRSlGgVS/9oFkdAj9nQK0D2anV9lChoBmgJaA9DCBDn4QSmPV5AlIaUUpRoFU3oA2gWR0CP3LTG5tm+dX2UKGgGaAloD0MIFeKRePlkZUCUhpRSlGgVTegDaBZHQI/hDs+mm+F1fZQoaAZoCWgPQwgYCAJk6HJjQJSGlFKUaBVN6ANoFkdAj+HlWGRFJHV9lChoBmgJaA9DCEgXm1YKplpAlIaUUpRoFU3oA2gWR0CP8odn003wdX2UKGgGaAloD0MItHHEWnxOY0CUhpRSlGgVTegDaBZHQI/2rYh+vyN1fZQoaAZoCWgPQwhXlX1XhDZiQJSGlFKUaBVN6ANoFkdAj/ofL1VYIXV9lChoBmgJaA9DCMHG9e/6X19AlIaUUpRoFU3oA2gWR0CQB6BYFJQMdX2UKGgGaAloD0MIzGPNyKDPYECUhpRSlGgVTegDaBZHQJAH0mVqveR1fZQoaAZoCWgPQwiyvRb03qhaQJSGlFKUaBVN6ANoFkdAkAvEzTF2m3V9lChoBmgJaA9DCCgrhqsDW11AlIaUUpRoFU3oA2gWR0CQEVDlHSWrdX2UKGgGaAloD0MIjPUNTG6pXECUhpRSlGgVTegDaBZHQJASDKvFFUh1fZQoaAZoCWgPQwhxHeOKi01gQJSGlFKUaBVN6ANoFkdAkBOyPdVNpXV9lChoBmgJaA9DCMiyYOIPkGFAlIaUUpRoFU3oA2gWR0CQGXQHiWE9dX2UKGgGaAloD0MIe6Lrwg/eOECUhpRSlGgVTQ8BaBZHQJAb/AJswcp1fZQoaAZoCWgPQwgAqyNHugljQJSGlFKUaBVN6ANoFkdAkB+iXt0FKXV9lChoBmgJaA9DCAWHF0SkHl9AlIaUUpRoFU3oA2gWR0CQKs1f3N9qdX2UKGgGaAloD0MIbqRskbSCX0CUhpRSlGgVTegDaBZHQJAsYiSq2jR1fZQoaAZoCWgPQwgzGCMShXFbQJSGlFKUaBVN6ANoFkdAkC4Lf1pTM3V9lChoBmgJaA9DCBEebRwxgWFAlIaUUpRoFU3oA2gWR0CQMEQ2/BWQdX2UKGgGaAloD0MIbk+Q2O4VY0CUhpRSlGgVTegDaBZHQJAwtuO0b991fZQoaAZoCWgPQwhlj1AzpGtgQJSGlFKUaBVN6ANoFkdAkDhdr433pXV9lChoBmgJaA9DCCQJwhVQNmBAlIaUUpRoFU3oA2gWR0CQmkI065oXdX2UKGgGaAloD0MIGOqwwi2OYUCUhpRSlGgVTegDaBZHQJCcA1l5GBp1fZQoaAZoCWgPQwiSBre1RXNwQJSGlFKUaBVNpQJoFkdAkKTJHNHH3nV9lChoBmgJaA9DCPmjqDN3iGFAlIaUUpRoFU3oA2gWR0CQplEHMUypdX2UKGgGaAloD0MI1PNuLKjQYkCUhpRSlGgVTegDaBZHQJCmgJHAh0R1fZQoaAZoCWgPQwgkm6vmOWZeQJSGlFKUaBVN6ANoFkdAkLAHOryUcHV9lChoBmgJaA9DCCZuFcRAeF9AlIaUUpRoFU3oA2gWR0CQsM5mAbyZdX2UKGgGaAloD0MIYAK37ubfSECUhpRSlGgVS7xoFkdAkLH6ifxtpHV9lChoBmgJaA9DCHy3eeMkDGJAlIaUUpRoFU3oA2gWR0CQsnXBP9DQdX2UKGgGaAloD0MI0uEhjJ/3akCUhpRSlGgVTa8DaBZHQJC6eieumrN1fZQoaAZoCWgPQwi7tUyG4zZjQJSGlFKUaBVN6ANoFkdAkLp9E9dNWXV9lChoBmgJaA9DCE93nnhO82hAlIaUUpRoFU2BAWgWR0CQu5plz2eydX2UKGgGaAloD0MI/3dEheqwWECUhpRSlGgVTegDaBZHQJDHRI6Kcd51fZQoaAZoCWgPQwhqbK8FvdJiQJSGlFKUaBVN6ANoFkdAkMiO23KB/nV9lChoBmgJaA9DCHJSmPc4hlxAlIaUUpRoFU3oA2gWR0CQydcd5prUdX2UKGgGaAloD0MI1sdD3127ZUCUhpRSlGgVTegDaBZHQJDLq9kBjnV1fZQoaAZoCWgPQwiT/IhfsVxdQJSGlFKUaBVN6ANoFkdAkMwIKQaJh3V9lChoBmgJaA9DCG/YtiizN2NAlIaUUpRoFU3oA2gWR0CQ0pjRlYlqdX2UKGgGaAloD0MI9aJ2vwokZECUhpRSlGgVTegDaBZHQJDUZPfsNUh1fZQoaAZoCWgPQwhCQL6ECpYqQJSGlFKUaBVL2GgWR0CQ1PtD2JzldX2UKGgGaAloD0MIwaikTsBuZECUhpRSlGgVTegDaBZHQJDV2OmzjWF1fZQoaAZoCWgPQwixFwrYDkRsQJSGlFKUaBVNPAFoFkdAkNfDA31jAnV9lChoBmgJaA9DCKq4cYt5iWNAlIaUUpRoFU3oA2gWR0CQ3jtKZlWfdX2UKGgGaAloD0MImfOMfUn2YECUhpRSlGgVTegDaBZHQJDnkvcrRSh1fZQoaAZoCWgPQwjI68Gk+OxhQJSGlFKUaBVN6ANoFkdAkOhbBfrrxHV9lChoBmgJaA9DCFhVL7/TkmRAlIaUUpRoFU3oA2gWR0CQ6X2HtWuHdX2UKGgGaAloD0MIKO54k9/ZXkCUhpRSlGgVTegDaBZHQJDp/JSzgMt1fZQoaAZoCWgPQwjFGi5yTy83QJSGlFKUaBVNHgFoFkdAkO7GldkauXV9lChoBmgJaA9DCFGIgEOo82VAlIaUUpRoFU3oA2gWR0CQ8da1TisGdX2UKGgGaAloD0MI2GFM+nu3X0CUhpRSlGgVTegDaBZHQJDx2SZBsyl1fZQoaAZoCWgPQwhhpu1f2V9sQJSGlFKUaBVNTgJoFkdAkPLKwljVhHV9lChoBmgJaA9DCHFUbqKWrWJAlIaUUpRoFU3oA2gWR0CQ8ukMTewcdX2UKGgGaAloD0MIWYtPATAKbECUhpRSlGgVTSQBaBZHQJD4XHAAQxx1fZQoaAZoCWgPQwhNvW4RmBxqQJSGlFKUaBVNRQFoFkdAkPvojW07bXV9lChoBmgJaA9DCKBU+3S8dmdAlIaUUpRoFU3oA2gWR0CQ/vbMX7+DdX2UKGgGaAloD0MIBoAqbtzzUkCUhpRSlGgVTegDaBZHQJECUY3vQWx1fZQoaAZoCWgPQwgI51PHKv9fQJSGlFKUaBVN6ANoFkdAkQK4sqaw2XV9lChoBmgJaA9DCDKs4o3M1zlAlIaUUpRoFUvMaBZHQJEEV+5OJtV1fZQoaAZoCWgPQwid9SnHZOkoQJSGlFKUaBVL8mgWR0CRCjNBWxQjdX2UKGgGaAloD0MIo1wav/BJXkCUhpRSlGgVTegDaBZHQJEMUnXumaZ1fZQoaAZoCWgPQwjjiLX4FM9iQJSGlFKUaBVN6ANoFkdAkQ0HF98Z1nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (260 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 158.1301751467194, "std_reward": 103.98463284306631, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-31T22:22:29.739011"}
|