RayS2022 commited on
Commit
b81cefb
1 Parent(s): 5fc9fde

Upload PPO LunarLander-v2 trained agent

Browse files
P1-lunarlander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8dab5e81b12c9df80dc71fd7a2da6544351f19c1db841b4dfe32073890a3533
3
+ size 147137
P1-lunarlander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
P1-lunarlander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fa3081b90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fa3081c20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fa3081cb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fa3081d40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9fa3081dd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9fa3081e60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fa3081ef0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9fa3081f80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fa3082050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fa30820e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fa3082170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9fa30c6d20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1659304612.756129,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC7YD6feo27ZsTMOiKs+bewfgu9m0HtuQAAgD8AAIA/RlE8vhJ0xTzdswg+MugivhzZRrt41R88AAAAAAAAAAAz1s08ewCCuoJjhro+twe1G8gZu1b5mjkAAIA/AACAP0Kelb798zC9Zs/2OMUrAjiylJs+6GgkuAAAgD8AAIA/pjrZPZIJXT8dQEk9/VSyvkwCaj3WTgW9AAAAAAAAAADzRZK9jw5Tut4fMLi1gSGzeGKGueugTzcAAIA/AACAP603Vj4sd4g8UAfTuvFCKrmZhRc+Dd4COgAAgD8AAIA/jambvY/afbqtOpU6/LxcN9of8bruHD+5AACAPwAAgD/myP899kwjurqiUDvB+1C4DatFu/LkPbkAAIA/AACAP7MJI77cIwW803X/ugLfyriawIM9fwMmOgAAgD8AAIA/01x3vpJK/Dw8yIS7LkBQvlc1tb6Dgz6/AACAPwAAgD+adQk8PJqFP4IyYzwWJjW/ck0MPRsaTbwAAAAAAAAAADM94T14uqs/y2MWP7BPn74XFbw9XxSfPgAAAAAAAAAAM5VuvpLQ0DxZ+iE7KVrDuWo5Zb5qOb65AACAPwAAgD9DT5i+YSFwPg4UDj5UkWa+40yHvNOX7bwAAAAAAAAAACilkL6Be7q8CNtSO4Ciozmbdyc+MUKCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzH7d6c6wVkCUhpRSlIwBbJRN6AOMAXSUR0CN5+Od5IH1dX2UKGgGaAloD0MIMjz2s1gmYkCUhpRSlGgVTegDaBZHQI3091B+nZV1fZQoaAZoCWgPQwjdCfZfZ0piQJSGlFKUaBVN6ANoFkdAjg3Ifr8iwHV9lChoBmgJaA9DCASQ2sTJSFpAlIaUUpRoFU3oA2gWR0COEtgjyFwldX2UKGgGaAloD0MIIsK/CBq+XUCUhpRSlGgVTegDaBZHQI4XuP91loV1fZQoaAZoCWgPQwgaMh6lEtpZQJSGlFKUaBVN6ANoFkdAjhinh0hePnV9lChoBmgJaA9DCLiswmYAt2JAlIaUUpRoFU3oA2gWR0COKzCyhSLqdX2UKGgGaAloD0MIW1t4Xqo/ZECUhpRSlGgVTegDaBZHQI4wBxzaK1p1fZQoaAZoCWgPQwhRhxVu+XdeQJSGlFKUaBVN6ANoFkdAjkCnxaxHG3V9lChoBmgJaA9DCJjCg2bXvFpAlIaUUpRoFU3oA2gWR0COTTL26ClKdX2UKGgGaAloD0MIfIDuy5kCWUCUhpRSlGgVTegDaBZHQI5NqSNfgJl1fZQoaAZoCWgPQwheDrvvGANdQJSGlFKUaBVN6ANoFkdAjlawvQF9r3V9lChoBmgJaA9DCPPGSWHee15AlIaUUpRoFU3oA2gWR0COY14CZF5OdX2UKGgGaAloD0MIW+m12Vj7WkCUhpRSlGgVTegDaBZHQI5lEghbGFV1fZQoaAZoCWgPQwiXcOgtHt5dQJSGlFKUaBVN6ANoFkdAjmj6RISUT3V9lChoBmgJaA9DCBOZucDlaF5AlIaUUpRoFU3oA2gWR0CObmjQiRnwdX2UKGgGaAloD0MI6Gor9heUYUCUhpRSlGgVTegDaBZHQI52D/ZM+Nd1fZQoaAZoCWgPQwgeN/xuOjBiQJSGlFKUaBVN6ANoFkdAjoKDz7MxGnV9lChoBmgJaA9DCAwBwLFnHyBAlIaUUpRoFU06AWgWR0COmKoNNJvpdX2UKGgGaAloD0MIZkrrb4k6YECUhpRSlGgVTegDaBZHQI6aXfdhy811fZQoaAZoCWgPQwjAXfbrTodhQJSGlFKUaBVN6ANoFkdAjp7qQq7ROXV9lChoBmgJaA9DCHKIuDmVdF5AlIaUUpRoFU3oA2gWR0COo2xMWXTmdX2UKGgGaAloD0MIqWxYU1kXV0CUhpRSlGgVTegDaBZHQI6kZFCswL51fZQoaAZoCWgPQwgJFRxeEKJfQJSGlFKUaBVN6ANoFkdAj3P5T6zmfXV9lChoBmgJaA9DCEkRGVbxa2FAlIaUUpRoFU3oA2gWR0CPeE7zTWoWdX2UKGgGaAloD0MIezGUE+2CMkCUhpRSlGgVTQoBaBZHQI98AEpy6tl1fZQoaAZoCWgPQwijeQCLfLdiQJSGlFKUaBVN6ANoFkdAj4ZzX8O09nV9lChoBmgJaA9DCNap8j0j0V5AlIaUUpRoFU3oA2gWR0CPkVO5avA5dX2UKGgGaAloD0MIPxnjw+xnWkCUhpRSlGgVTegDaBZHQI+RuXNTtLN1fZQoaAZoCWgPQwi+pZwv9ohaQJSGlFKUaBVN6ANoFkdAj5ohMzuWr3V9lChoBmgJaA9DCJSjAFEwUmFAlIaUUpRoFU3oA2gWR0CPpatcv/R3dX2UKGgGaAloD0MIwFlKlpNcWkCUhpRSlGgVTegDaBZHQI+nUGVzIWB1fZQoaAZoCWgPQwgvNNdppP1cQJSGlFKUaBVN6ANoFkdAj6rTXBguy3V9lChoBmgJaA9DCM8yi1BsCl9AlIaUUpRoFU3oA2gWR0CPtuVtXPqtdX2UKGgGaAloD0MIgLdAguKNQkCUhpRSlGgVTZYBaBZHQI+5dzMibDx1fZQoaAZoCWgPQwjMlqyKcC5iQJSGlFKUaBVN6ANoFkdAj8KUmMOwxHV9lChoBmgJaA9DCE7U0twKrmJAlIaUUpRoFU3oA2gWR0CP1wBRyfcvdX2UKGgGaAloD0MI3WCowwrnHECUhpRSlGgVS/9oFkdAj9nQK0D2anV9lChoBmgJaA9DCBDn4QSmPV5AlIaUUpRoFU3oA2gWR0CP3LTG5tm+dX2UKGgGaAloD0MIFeKRePlkZUCUhpRSlGgVTegDaBZHQI/hDs+mm+F1fZQoaAZoCWgPQwgYCAJk6HJjQJSGlFKUaBVN6ANoFkdAj+HlWGRFJHV9lChoBmgJaA9DCEgXm1YKplpAlIaUUpRoFU3oA2gWR0CP8odn003wdX2UKGgGaAloD0MItHHEWnxOY0CUhpRSlGgVTegDaBZHQI/2rYh+vyN1fZQoaAZoCWgPQwhXlX1XhDZiQJSGlFKUaBVN6ANoFkdAj/ofL1VYIXV9lChoBmgJaA9DCMHG9e/6X19AlIaUUpRoFU3oA2gWR0CQB6BYFJQMdX2UKGgGaAloD0MIzGPNyKDPYECUhpRSlGgVTegDaBZHQJAH0mVqveR1fZQoaAZoCWgPQwiyvRb03qhaQJSGlFKUaBVN6ANoFkdAkAvEzTF2m3V9lChoBmgJaA9DCCgrhqsDW11AlIaUUpRoFU3oA2gWR0CQEVDlHSWrdX2UKGgGaAloD0MIjPUNTG6pXECUhpRSlGgVTegDaBZHQJASDKvFFUh1fZQoaAZoCWgPQwhxHeOKi01gQJSGlFKUaBVN6ANoFkdAkBOyPdVNpXV9lChoBmgJaA9DCMiyYOIPkGFAlIaUUpRoFU3oA2gWR0CQGXQHiWE9dX2UKGgGaAloD0MIe6Lrwg/eOECUhpRSlGgVTQ8BaBZHQJAb/AJswcp1fZQoaAZoCWgPQwgAqyNHugljQJSGlFKUaBVN6ANoFkdAkB+iXt0FKXV9lChoBmgJaA9DCAWHF0SkHl9AlIaUUpRoFU3oA2gWR0CQKs1f3N9qdX2UKGgGaAloD0MIbqRskbSCX0CUhpRSlGgVTegDaBZHQJAsYiSq2jR1fZQoaAZoCWgPQwgzGCMShXFbQJSGlFKUaBVN6ANoFkdAkC4Lf1pTM3V9lChoBmgJaA9DCBEebRwxgWFAlIaUUpRoFU3oA2gWR0CQMEQ2/BWQdX2UKGgGaAloD0MIbk+Q2O4VY0CUhpRSlGgVTegDaBZHQJAwtuO0b991fZQoaAZoCWgPQwhlj1AzpGtgQJSGlFKUaBVN6ANoFkdAkDhdr433pXV9lChoBmgJaA9DCCQJwhVQNmBAlIaUUpRoFU3oA2gWR0CQmkI065oXdX2UKGgGaAloD0MIGOqwwi2OYUCUhpRSlGgVTegDaBZHQJCcA1l5GBp1fZQoaAZoCWgPQwiSBre1RXNwQJSGlFKUaBVNpQJoFkdAkKTJHNHH3nV9lChoBmgJaA9DCPmjqDN3iGFAlIaUUpRoFU3oA2gWR0CQplEHMUypdX2UKGgGaAloD0MI1PNuLKjQYkCUhpRSlGgVTegDaBZHQJCmgJHAh0R1fZQoaAZoCWgPQwgkm6vmOWZeQJSGlFKUaBVN6ANoFkdAkLAHOryUcHV9lChoBmgJaA9DCCZuFcRAeF9AlIaUUpRoFU3oA2gWR0CQsM5mAbyZdX2UKGgGaAloD0MIYAK37ubfSECUhpRSlGgVS7xoFkdAkLH6ifxtpHV9lChoBmgJaA9DCHy3eeMkDGJAlIaUUpRoFU3oA2gWR0CQsnXBP9DQdX2UKGgGaAloD0MI0uEhjJ/3akCUhpRSlGgVTa8DaBZHQJC6eieumrN1fZQoaAZoCWgPQwi7tUyG4zZjQJSGlFKUaBVN6ANoFkdAkLp9E9dNWXV9lChoBmgJaA9DCE93nnhO82hAlIaUUpRoFU2BAWgWR0CQu5plz2eydX2UKGgGaAloD0MI/3dEheqwWECUhpRSlGgVTegDaBZHQJDHRI6Kcd51fZQoaAZoCWgPQwhqbK8FvdJiQJSGlFKUaBVN6ANoFkdAkMiO23KB/nV9lChoBmgJaA9DCHJSmPc4hlxAlIaUUpRoFU3oA2gWR0CQydcd5prUdX2UKGgGaAloD0MI1sdD3127ZUCUhpRSlGgVTegDaBZHQJDLq9kBjnV1fZQoaAZoCWgPQwiT/IhfsVxdQJSGlFKUaBVN6ANoFkdAkMwIKQaJh3V9lChoBmgJaA9DCG/YtiizN2NAlIaUUpRoFU3oA2gWR0CQ0pjRlYlqdX2UKGgGaAloD0MI9aJ2vwokZECUhpRSlGgVTegDaBZHQJDUZPfsNUh1fZQoaAZoCWgPQwhCQL6ECpYqQJSGlFKUaBVL2GgWR0CQ1PtD2JzldX2UKGgGaAloD0MIwaikTsBuZECUhpRSlGgVTegDaBZHQJDV2OmzjWF1fZQoaAZoCWgPQwixFwrYDkRsQJSGlFKUaBVNPAFoFkdAkNfDA31jAnV9lChoBmgJaA9DCKq4cYt5iWNAlIaUUpRoFU3oA2gWR0CQ3jtKZlWfdX2UKGgGaAloD0MImfOMfUn2YECUhpRSlGgVTegDaBZHQJDnkvcrRSh1fZQoaAZoCWgPQwjI68Gk+OxhQJSGlFKUaBVN6ANoFkdAkOhbBfrrxHV9lChoBmgJaA9DCFhVL7/TkmRAlIaUUpRoFU3oA2gWR0CQ6X2HtWuHdX2UKGgGaAloD0MIKO54k9/ZXkCUhpRSlGgVTegDaBZHQJDp/JSzgMt1fZQoaAZoCWgPQwjFGi5yTy83QJSGlFKUaBVNHgFoFkdAkO7GldkauXV9lChoBmgJaA9DCFGIgEOo82VAlIaUUpRoFU3oA2gWR0CQ8da1TisGdX2UKGgGaAloD0MI2GFM+nu3X0CUhpRSlGgVTegDaBZHQJDx2SZBsyl1fZQoaAZoCWgPQwhhpu1f2V9sQJSGlFKUaBVNTgJoFkdAkPLKwljVhHV9lChoBmgJaA9DCHFUbqKWrWJAlIaUUpRoFU3oA2gWR0CQ8ukMTewcdX2UKGgGaAloD0MIWYtPATAKbECUhpRSlGgVTSQBaBZHQJD4XHAAQxx1fZQoaAZoCWgPQwhNvW4RmBxqQJSGlFKUaBVNRQFoFkdAkPvojW07bXV9lChoBmgJaA9DCKBU+3S8dmdAlIaUUpRoFU3oA2gWR0CQ/vbMX7+DdX2UKGgGaAloD0MIBoAqbtzzUkCUhpRSlGgVTegDaBZHQJECUY3vQWx1fZQoaAZoCWgPQwgI51PHKv9fQJSGlFKUaBVN6ANoFkdAkQK4sqaw2XV9lChoBmgJaA9DCDKs4o3M1zlAlIaUUpRoFUvMaBZHQJEEV+5OJtV1fZQoaAZoCWgPQwid9SnHZOkoQJSGlFKUaBVL8mgWR0CRCjNBWxQjdX2UKGgGaAloD0MIo1wav/BJXkCUhpRSlGgVTegDaBZHQJEMUnXumaZ1fZQoaAZoCWgPQwjjiLX4FM9iQJSGlFKUaBVN6ANoFkdAkQ0HF98Z1nVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
P1-lunarlander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90a3e222d0d01e2dcced5be27f0112bff78a1f5f84f115b6595deb7b871d32b8
3
+ size 87865
P1-lunarlander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27000152342444b122ac09daea38440189326b0b91df6b10b90ac1158b6cb4d1
3
+ size 43201
P1-lunarlander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
P1-lunarlander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 158.13 +/- 103.98
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9fa3081b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9fa3081c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9fa3081cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9fa3081d40>", "_build": "<function ActorCriticPolicy._build at 0x7f9fa3081dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9fa3081e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9fa3081ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9fa3081f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9fa3082050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9fa30820e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9fa3082170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9fa30c6d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659304612.756129, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC7YD6feo27ZsTMOiKs+bewfgu9m0HtuQAAgD8AAIA/RlE8vhJ0xTzdswg+MugivhzZRrt41R88AAAAAAAAAAAz1s08ewCCuoJjhro+twe1G8gZu1b5mjkAAIA/AACAP0Kelb798zC9Zs/2OMUrAjiylJs+6GgkuAAAgD8AAIA/pjrZPZIJXT8dQEk9/VSyvkwCaj3WTgW9AAAAAAAAAADzRZK9jw5Tut4fMLi1gSGzeGKGueugTzcAAIA/AACAP603Vj4sd4g8UAfTuvFCKrmZhRc+Dd4COgAAgD8AAIA/jambvY/afbqtOpU6/LxcN9of8bruHD+5AACAPwAAgD/myP899kwjurqiUDvB+1C4DatFu/LkPbkAAIA/AACAP7MJI77cIwW803X/ugLfyriawIM9fwMmOgAAgD8AAIA/01x3vpJK/Dw8yIS7LkBQvlc1tb6Dgz6/AACAPwAAgD+adQk8PJqFP4IyYzwWJjW/ck0MPRsaTbwAAAAAAAAAADM94T14uqs/y2MWP7BPn74XFbw9XxSfPgAAAAAAAAAAM5VuvpLQ0DxZ+iE7KVrDuWo5Zb5qOb65AACAPwAAgD9DT5i+YSFwPg4UDj5UkWa+40yHvNOX7bwAAAAAAAAAACilkL6Be7q8CNtSO4Ciozmbdyc+MUKCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzH7d6c6wVkCUhpRSlIwBbJRN6AOMAXSUR0CN5+Od5IH1dX2UKGgGaAloD0MIMjz2s1gmYkCUhpRSlGgVTegDaBZHQI3091B+nZV1fZQoaAZoCWgPQwjdCfZfZ0piQJSGlFKUaBVN6ANoFkdAjg3Ifr8iwHV9lChoBmgJaA9DCASQ2sTJSFpAlIaUUpRoFU3oA2gWR0COEtgjyFwldX2UKGgGaAloD0MIIsK/CBq+XUCUhpRSlGgVTegDaBZHQI4XuP91loV1fZQoaAZoCWgPQwgaMh6lEtpZQJSGlFKUaBVN6ANoFkdAjhinh0hePnV9lChoBmgJaA9DCLiswmYAt2JAlIaUUpRoFU3oA2gWR0COKzCyhSLqdX2UKGgGaAloD0MIW1t4Xqo/ZECUhpRSlGgVTegDaBZHQI4wBxzaK1p1fZQoaAZoCWgPQwhRhxVu+XdeQJSGlFKUaBVN6ANoFkdAjkCnxaxHG3V9lChoBmgJaA9DCJjCg2bXvFpAlIaUUpRoFU3oA2gWR0COTTL26ClKdX2UKGgGaAloD0MIfIDuy5kCWUCUhpRSlGgVTegDaBZHQI5NqSNfgJl1fZQoaAZoCWgPQwheDrvvGANdQJSGlFKUaBVN6ANoFkdAjlawvQF9r3V9lChoBmgJaA9DCPPGSWHee15AlIaUUpRoFU3oA2gWR0COY14CZF5OdX2UKGgGaAloD0MIW+m12Vj7WkCUhpRSlGgVTegDaBZHQI5lEghbGFV1fZQoaAZoCWgPQwiXcOgtHt5dQJSGlFKUaBVN6ANoFkdAjmj6RISUT3V9lChoBmgJaA9DCBOZucDlaF5AlIaUUpRoFU3oA2gWR0CObmjQiRnwdX2UKGgGaAloD0MI6Gor9heUYUCUhpRSlGgVTegDaBZHQI52D/ZM+Nd1fZQoaAZoCWgPQwgeN/xuOjBiQJSGlFKUaBVN6ANoFkdAjoKDz7MxGnV9lChoBmgJaA9DCAwBwLFnHyBAlIaUUpRoFU06AWgWR0COmKoNNJvpdX2UKGgGaAloD0MIZkrrb4k6YECUhpRSlGgVTegDaBZHQI6aXfdhy811fZQoaAZoCWgPQwjAXfbrTodhQJSGlFKUaBVN6ANoFkdAjp7qQq7ROXV9lChoBmgJaA9DCHKIuDmVdF5AlIaUUpRoFU3oA2gWR0COo2xMWXTmdX2UKGgGaAloD0MIqWxYU1kXV0CUhpRSlGgVTegDaBZHQI6kZFCswL51fZQoaAZoCWgPQwgJFRxeEKJfQJSGlFKUaBVN6ANoFkdAj3P5T6zmfXV9lChoBmgJaA9DCEkRGVbxa2FAlIaUUpRoFU3oA2gWR0CPeE7zTWoWdX2UKGgGaAloD0MIezGUE+2CMkCUhpRSlGgVTQoBaBZHQI98AEpy6tl1fZQoaAZoCWgPQwijeQCLfLdiQJSGlFKUaBVN6ANoFkdAj4ZzX8O09nV9lChoBmgJaA9DCNap8j0j0V5AlIaUUpRoFU3oA2gWR0CPkVO5avA5dX2UKGgGaAloD0MIPxnjw+xnWkCUhpRSlGgVTegDaBZHQI+RuXNTtLN1fZQoaAZoCWgPQwi+pZwv9ohaQJSGlFKUaBVN6ANoFkdAj5ohMzuWr3V9lChoBmgJaA9DCJSjAFEwUmFAlIaUUpRoFU3oA2gWR0CPpatcv/R3dX2UKGgGaAloD0MIwFlKlpNcWkCUhpRSlGgVTegDaBZHQI+nUGVzIWB1fZQoaAZoCWgPQwgvNNdppP1cQJSGlFKUaBVN6ANoFkdAj6rTXBguy3V9lChoBmgJaA9DCM8yi1BsCl9AlIaUUpRoFU3oA2gWR0CPtuVtXPqtdX2UKGgGaAloD0MIgLdAguKNQkCUhpRSlGgVTZYBaBZHQI+5dzMibDx1fZQoaAZoCWgPQwjMlqyKcC5iQJSGlFKUaBVN6ANoFkdAj8KUmMOwxHV9lChoBmgJaA9DCE7U0twKrmJAlIaUUpRoFU3oA2gWR0CP1wBRyfcvdX2UKGgGaAloD0MI3WCowwrnHECUhpRSlGgVS/9oFkdAj9nQK0D2anV9lChoBmgJaA9DCBDn4QSmPV5AlIaUUpRoFU3oA2gWR0CP3LTG5tm+dX2UKGgGaAloD0MIFeKRePlkZUCUhpRSlGgVTegDaBZHQI/hDs+mm+F1fZQoaAZoCWgPQwgYCAJk6HJjQJSGlFKUaBVN6ANoFkdAj+HlWGRFJHV9lChoBmgJaA9DCEgXm1YKplpAlIaUUpRoFU3oA2gWR0CP8odn003wdX2UKGgGaAloD0MItHHEWnxOY0CUhpRSlGgVTegDaBZHQI/2rYh+vyN1fZQoaAZoCWgPQwhXlX1XhDZiQJSGlFKUaBVN6ANoFkdAj/ofL1VYIXV9lChoBmgJaA9DCMHG9e/6X19AlIaUUpRoFU3oA2gWR0CQB6BYFJQMdX2UKGgGaAloD0MIzGPNyKDPYECUhpRSlGgVTegDaBZHQJAH0mVqveR1fZQoaAZoCWgPQwiyvRb03qhaQJSGlFKUaBVN6ANoFkdAkAvEzTF2m3V9lChoBmgJaA9DCCgrhqsDW11AlIaUUpRoFU3oA2gWR0CQEVDlHSWrdX2UKGgGaAloD0MIjPUNTG6pXECUhpRSlGgVTegDaBZHQJASDKvFFUh1fZQoaAZoCWgPQwhxHeOKi01gQJSGlFKUaBVN6ANoFkdAkBOyPdVNpXV9lChoBmgJaA9DCMiyYOIPkGFAlIaUUpRoFU3oA2gWR0CQGXQHiWE9dX2UKGgGaAloD0MIe6Lrwg/eOECUhpRSlGgVTQ8BaBZHQJAb/AJswcp1fZQoaAZoCWgPQwgAqyNHugljQJSGlFKUaBVN6ANoFkdAkB+iXt0FKXV9lChoBmgJaA9DCAWHF0SkHl9AlIaUUpRoFU3oA2gWR0CQKs1f3N9qdX2UKGgGaAloD0MIbqRskbSCX0CUhpRSlGgVTegDaBZHQJAsYiSq2jR1fZQoaAZoCWgPQwgzGCMShXFbQJSGlFKUaBVN6ANoFkdAkC4Lf1pTM3V9lChoBmgJaA9DCBEebRwxgWFAlIaUUpRoFU3oA2gWR0CQMEQ2/BWQdX2UKGgGaAloD0MIbk+Q2O4VY0CUhpRSlGgVTegDaBZHQJAwtuO0b991fZQoaAZoCWgPQwhlj1AzpGtgQJSGlFKUaBVN6ANoFkdAkDhdr433pXV9lChoBmgJaA9DCCQJwhVQNmBAlIaUUpRoFU3oA2gWR0CQmkI065oXdX2UKGgGaAloD0MIGOqwwi2OYUCUhpRSlGgVTegDaBZHQJCcA1l5GBp1fZQoaAZoCWgPQwiSBre1RXNwQJSGlFKUaBVNpQJoFkdAkKTJHNHH3nV9lChoBmgJaA9DCPmjqDN3iGFAlIaUUpRoFU3oA2gWR0CQplEHMUypdX2UKGgGaAloD0MI1PNuLKjQYkCUhpRSlGgVTegDaBZHQJCmgJHAh0R1fZQoaAZoCWgPQwgkm6vmOWZeQJSGlFKUaBVN6ANoFkdAkLAHOryUcHV9lChoBmgJaA9DCCZuFcRAeF9AlIaUUpRoFU3oA2gWR0CQsM5mAbyZdX2UKGgGaAloD0MIYAK37ubfSECUhpRSlGgVS7xoFkdAkLH6ifxtpHV9lChoBmgJaA9DCHy3eeMkDGJAlIaUUpRoFU3oA2gWR0CQsnXBP9DQdX2UKGgGaAloD0MI0uEhjJ/3akCUhpRSlGgVTa8DaBZHQJC6eieumrN1fZQoaAZoCWgPQwi7tUyG4zZjQJSGlFKUaBVN6ANoFkdAkLp9E9dNWXV9lChoBmgJaA9DCE93nnhO82hAlIaUUpRoFU2BAWgWR0CQu5plz2eydX2UKGgGaAloD0MI/3dEheqwWECUhpRSlGgVTegDaBZHQJDHRI6Kcd51fZQoaAZoCWgPQwhqbK8FvdJiQJSGlFKUaBVN6ANoFkdAkMiO23KB/nV9lChoBmgJaA9DCHJSmPc4hlxAlIaUUpRoFU3oA2gWR0CQydcd5prUdX2UKGgGaAloD0MI1sdD3127ZUCUhpRSlGgVTegDaBZHQJDLq9kBjnV1fZQoaAZoCWgPQwiT/IhfsVxdQJSGlFKUaBVN6ANoFkdAkMwIKQaJh3V9lChoBmgJaA9DCG/YtiizN2NAlIaUUpRoFU3oA2gWR0CQ0pjRlYlqdX2UKGgGaAloD0MI9aJ2vwokZECUhpRSlGgVTegDaBZHQJDUZPfsNUh1fZQoaAZoCWgPQwhCQL6ECpYqQJSGlFKUaBVL2GgWR0CQ1PtD2JzldX2UKGgGaAloD0MIwaikTsBuZECUhpRSlGgVTegDaBZHQJDV2OmzjWF1fZQoaAZoCWgPQwixFwrYDkRsQJSGlFKUaBVNPAFoFkdAkNfDA31jAnV9lChoBmgJaA9DCKq4cYt5iWNAlIaUUpRoFU3oA2gWR0CQ3jtKZlWfdX2UKGgGaAloD0MImfOMfUn2YECUhpRSlGgVTegDaBZHQJDnkvcrRSh1fZQoaAZoCWgPQwjI68Gk+OxhQJSGlFKUaBVN6ANoFkdAkOhbBfrrxHV9lChoBmgJaA9DCFhVL7/TkmRAlIaUUpRoFU3oA2gWR0CQ6X2HtWuHdX2UKGgGaAloD0MIKO54k9/ZXkCUhpRSlGgVTegDaBZHQJDp/JSzgMt1fZQoaAZoCWgPQwjFGi5yTy83QJSGlFKUaBVNHgFoFkdAkO7GldkauXV9lChoBmgJaA9DCFGIgEOo82VAlIaUUpRoFU3oA2gWR0CQ8da1TisGdX2UKGgGaAloD0MI2GFM+nu3X0CUhpRSlGgVTegDaBZHQJDx2SZBsyl1fZQoaAZoCWgPQwhhpu1f2V9sQJSGlFKUaBVNTgJoFkdAkPLKwljVhHV9lChoBmgJaA9DCHFUbqKWrWJAlIaUUpRoFU3oA2gWR0CQ8ukMTewcdX2UKGgGaAloD0MIWYtPATAKbECUhpRSlGgVTSQBaBZHQJD4XHAAQxx1fZQoaAZoCWgPQwhNvW4RmBxqQJSGlFKUaBVNRQFoFkdAkPvojW07bXV9lChoBmgJaA9DCKBU+3S8dmdAlIaUUpRoFU3oA2gWR0CQ/vbMX7+DdX2UKGgGaAloD0MIBoAqbtzzUkCUhpRSlGgVTegDaBZHQJECUY3vQWx1fZQoaAZoCWgPQwgI51PHKv9fQJSGlFKUaBVN6ANoFkdAkQK4sqaw2XV9lChoBmgJaA9DCDKs4o3M1zlAlIaUUpRoFUvMaBZHQJEEV+5OJtV1fZQoaAZoCWgPQwid9SnHZOkoQJSGlFKUaBVL8mgWR0CRCjNBWxQjdX2UKGgGaAloD0MIo1wav/BJXkCUhpRSlGgVTegDaBZHQJEMUnXumaZ1fZQoaAZoCWgPQwjjiLX4FM9iQJSGlFKUaBVN6ANoFkdAkQ0HF98Z1nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (260 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 158.1301751467194, "std_reward": 103.98463284306631, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-31T22:22:29.739011"}