RayDu0010 commited on
Commit
22c3f94
·
verified ·
1 Parent(s): 05941d6

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/README.md +202 -0
  2. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/adapter_config.json +34 -0
  3. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/adapter_model.safetensors +3 -0
  4. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/latest +1 -0
  5. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/merges.txt +0 -0
  6. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_0.pth +3 -0
  7. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_1.pth +3 -0
  8. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_2.pth +3 -0
  9. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_3.pth +3 -0
  10. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_4.pth +3 -0
  11. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_5.pth +3 -0
  12. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_6.pth +3 -0
  13. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_7.pth +3 -0
  14. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/scheduler.pt +3 -0
  15. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/special_tokens_map.json +51 -0
  16. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/tokenizer.json +0 -0
  17. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/tokenizer_config.json +188 -0
  18. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/trainer_state.json +748 -0
  19. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/training_args.bin +3 -0
  20. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/vocab.json +0 -0
  21. hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/zero_to_fp32.py +604 -0
  22. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/README.md +202 -0
  23. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/adapter_config.json +34 -0
  24. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/adapter_model.safetensors +3 -0
  25. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/latest +1 -0
  26. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/merges.txt +0 -0
  27. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_0.pth +3 -0
  28. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_1.pth +3 -0
  29. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_2.pth +3 -0
  30. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_3.pth +3 -0
  31. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_4.pth +3 -0
  32. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_5.pth +3 -0
  33. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_6.pth +3 -0
  34. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_7.pth +3 -0
  35. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/scheduler.pt +3 -0
  36. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/special_tokens_map.json +51 -0
  37. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/tokenizer.json +0 -0
  38. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/tokenizer_config.json +188 -0
  39. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/trainer_state.json +930 -0
  40. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/training_args.bin +3 -0
  41. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/vocab.json +0 -0
  42. hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/zero_to_fp32.py +604 -0
  43. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/README.md +202 -0
  44. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/adapter_config.json +34 -0
  45. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/adapter_model.safetensors +3 -0
  46. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/latest +1 -0
  47. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/merges.txt +0 -0
  48. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/rng_state_0.pth +3 -0
  49. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/rng_state_1.pth +3 -0
  50. hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/rng_state_2.pth +3 -0
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.3-8b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.3-8b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "q_proj",
25
+ "up_proj",
26
+ "down_proj",
27
+ "k_proj",
28
+ "v_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7376a510876af63e46d950223de15a48382fd21155c4d932913ba22de24948ff
3
+ size 791751704
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step513
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34ce998dc90e5b58ee264dc92a7011c1691aba3da1f900b1766b5910e4bd14fc
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acb67a9355c87cb188dd7a915e33581e98489567c2d23b643c994f7e53ea555f
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5d518e80648b2ae9ad53b74f6b9554edb2abac53f69f8b9ec1a1a41b54ea33
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c31602cb60cec4148427538c27f3c82d1cf696c2d380dcf625e27f42b2fb60a1
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1c7eb8bfa2e654e2a0f2b1a78e763e5b2bd5ce627cc8dd6711e9dacd7524da0
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3c625f07536592873d52db06f011f77a81c4118aa25707be94b8c3bea7dc7f9
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25c8cf5aca85e630bd92ef136e47cde157a64420d4cefe4a0150a97e7a39c891
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482a2afa3704fd56a9ea56238fb3cddcd927c5873325b6dfbcac269b51a60f85
3
+ size 15920
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08bb599f8f80d068049d45be04c8657de2a8ecc9cfa9fadcb4c0e6bf9802d841
3
+ size 1064
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<fim_prefix>",
5
+ "<fim_middle>",
6
+ "<fim_suffix>",
7
+ "<fim_pad>",
8
+ "<filename>",
9
+ "<gh_stars>",
10
+ "<issue_start>",
11
+ "<issue_comment>",
12
+ "<issue_closed>",
13
+ "<jupyter_start>",
14
+ "<jupyter_text>",
15
+ "<jupyter_code>",
16
+ "<jupyter_output>",
17
+ "<empty_output>",
18
+ "<commit_before>",
19
+ "<commit_msg>",
20
+ "<commit_after>",
21
+ "<reponame>"
22
+ ],
23
+ "bos_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "eos_token": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "pad_token": {
38
+ "content": "<|endoftext|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<|endoftext|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/tokenizer_config.json ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<fim_prefix>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<fim_middle>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<fim_suffix>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<fim_pad>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<filename>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<gh_stars>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<issue_start>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_comment>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_closed>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<jupyter_start>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_text>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_code>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_output>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<empty_output>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<commit_before>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<commit_msg>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "17": {
141
+ "content": "<commit_after>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "18": {
149
+ "content": "<reponame>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ }
156
+ },
157
+ "additional_special_tokens": [
158
+ "<|endoftext|>",
159
+ "<fim_prefix>",
160
+ "<fim_middle>",
161
+ "<fim_suffix>",
162
+ "<fim_pad>",
163
+ "<filename>",
164
+ "<gh_stars>",
165
+ "<issue_start>",
166
+ "<issue_comment>",
167
+ "<issue_closed>",
168
+ "<jupyter_start>",
169
+ "<jupyter_text>",
170
+ "<jupyter_code>",
171
+ "<jupyter_output>",
172
+ "<empty_output>",
173
+ "<commit_before>",
174
+ "<commit_msg>",
175
+ "<commit_after>",
176
+ "<reponame>"
177
+ ],
178
+ "bos_token": "<|endoftext|>",
179
+ "clean_up_tokenization_spaces": true,
180
+ "eos_token": "<|endoftext|>",
181
+ "extra_special_tokens": {},
182
+ "model_max_length": 8192,
183
+ "pad_token": "<|endoftext|>",
184
+ "padding_side": "left",
185
+ "tokenizer_class": "GPT2Tokenizer",
186
+ "unk_token": "<|endoftext|>",
187
+ "vocab_size": 49152
188
+ }
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/trainer_state.json ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 514,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.01949317738791423,
14
+ "grad_norm": 0.9854941964149475,
15
+ "learning_rate": 1.875e-06,
16
+ "loss": 1.3535,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.03898635477582846,
21
+ "grad_norm": 0.8216362595558167,
22
+ "learning_rate": 4.21875e-06,
23
+ "loss": 1.3855,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.05847953216374269,
28
+ "grad_norm": 0.47613006830215454,
29
+ "learning_rate": 6.5625e-06,
30
+ "loss": 1.427,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.07797270955165692,
35
+ "grad_norm": 0.43144744634628296,
36
+ "learning_rate": 8.90625e-06,
37
+ "loss": 1.3401,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.09746588693957114,
42
+ "grad_norm": 0.4169255793094635,
43
+ "learning_rate": 1.125e-05,
44
+ "loss": 1.3386,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.11695906432748537,
49
+ "grad_norm": 0.43670251965522766,
50
+ "learning_rate": 1.359375e-05,
51
+ "loss": 1.3226,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.1364522417153996,
56
+ "grad_norm": 0.46294134855270386,
57
+ "learning_rate": 1.59375e-05,
58
+ "loss": 1.269,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.15594541910331383,
63
+ "grad_norm": 0.4115634858608246,
64
+ "learning_rate": 1.828125e-05,
65
+ "loss": 1.3314,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.17543859649122806,
70
+ "grad_norm": 0.4386284053325653,
71
+ "learning_rate": 2.0625e-05,
72
+ "loss": 1.3226,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.1949317738791423,
77
+ "grad_norm": 0.43195125460624695,
78
+ "learning_rate": 2.296875e-05,
79
+ "loss": 1.2715,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.21442495126705652,
84
+ "grad_norm": 0.3740931451320648,
85
+ "learning_rate": 2.5312500000000002e-05,
86
+ "loss": 1.2907,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.23391812865497075,
91
+ "grad_norm": 0.37740710377693176,
92
+ "learning_rate": 2.765625e-05,
93
+ "loss": 1.2552,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.253411306042885,
98
+ "grad_norm": 0.36451616883277893,
99
+ "learning_rate": 3e-05,
100
+ "loss": 1.2549,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.2729044834307992,
105
+ "grad_norm": 0.4989257752895355,
106
+ "learning_rate": 2.9998748508718575e-05,
107
+ "loss": 1.2123,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.29239766081871343,
112
+ "grad_norm": 0.4312180280685425,
113
+ "learning_rate": 2.9994994243705013e-05,
114
+ "loss": 1.2314,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.31189083820662766,
119
+ "grad_norm": 0.397249698638916,
120
+ "learning_rate": 2.9988737831416642e-05,
121
+ "loss": 1.2402,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.3313840155945419,
126
+ "grad_norm": 0.47213783860206604,
127
+ "learning_rate": 2.9979980315832853e-05,
128
+ "loss": 1.1228,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.3508771929824561,
133
+ "grad_norm": 0.46933478116989136,
134
+ "learning_rate": 2.9968723158280906e-05,
135
+ "loss": 1.1763,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.37037037037037035,
140
+ "grad_norm": 0.5299496650695801,
141
+ "learning_rate": 2.995496823719206e-05,
142
+ "loss": 1.1305,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.3898635477582846,
147
+ "grad_norm": 0.8233343362808228,
148
+ "learning_rate": 2.9938717847788167e-05,
149
+ "loss": 1.1215,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.4093567251461988,
154
+ "grad_norm": 0.6264380812644958,
155
+ "learning_rate": 2.9919974701698638e-05,
156
+ "loss": 1.1106,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.42884990253411304,
161
+ "grad_norm": 0.5522003173828125,
162
+ "learning_rate": 2.989874192650801e-05,
163
+ "loss": 1.0699,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.44834307992202727,
168
+ "grad_norm": 0.5564708113670349,
169
+ "learning_rate": 2.9875023065234003e-05,
170
+ "loss": 1.1112,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.4678362573099415,
175
+ "grad_norm": 0.5427656173706055,
176
+ "learning_rate": 2.984882207573638e-05,
177
+ "loss": 1.112,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.4873294346978557,
182
+ "grad_norm": 1.1721397638320923,
183
+ "learning_rate": 2.982014333005645e-05,
184
+ "loss": 1.0307,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.50682261208577,
189
+ "grad_norm": 3.603581666946411,
190
+ "learning_rate": 2.9788991613687575e-05,
191
+ "loss": 1.0366,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.5263157894736842,
196
+ "grad_norm": 0.7015699744224548,
197
+ "learning_rate": 2.9755372124776616e-05,
198
+ "loss": 1.0402,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.5458089668615984,
203
+ "grad_norm": 0.5572109818458557,
204
+ "learning_rate": 2.971929047325654e-05,
205
+ "loss": 1.0234,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.5653021442495126,
210
+ "grad_norm": 0.7717771530151367,
211
+ "learning_rate": 2.968075267991032e-05,
212
+ "loss": 1.0566,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.5847953216374269,
217
+ "grad_norm": 0.6046805381774902,
218
+ "learning_rate": 2.963976517536627e-05,
219
+ "loss": 0.9953,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.6042884990253411,
224
+ "grad_norm": 0.6307802200317383,
225
+ "learning_rate": 2.9596334799025003e-05,
226
+ "loss": 1.0418,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.6237816764132553,
231
+ "grad_norm": 0.6888144612312317,
232
+ "learning_rate": 2.9550468797918162e-05,
233
+ "loss": 0.9906,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.6432748538011696,
238
+ "grad_norm": 0.7008697986602783,
239
+ "learning_rate": 2.950217482549915e-05,
240
+ "loss": 0.973,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.6627680311890838,
245
+ "grad_norm": 0.6218302249908447,
246
+ "learning_rate": 2.9451460940366025e-05,
247
+ "loss": 0.9422,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.682261208576998,
252
+ "grad_norm": 0.6840229630470276,
253
+ "learning_rate": 2.9398335604916797e-05,
254
+ "loss": 0.9563,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.7017543859649122,
259
+ "grad_norm": 0.7676129341125488,
260
+ "learning_rate": 2.9342807683937352e-05,
261
+ "loss": 0.9923,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.7212475633528265,
266
+ "grad_norm": 0.7137411236763,
267
+ "learning_rate": 2.928488644312222e-05,
268
+ "loss": 0.9973,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.7407407407407407,
273
+ "grad_norm": 0.7639793157577515,
274
+ "learning_rate": 2.9224581547528453e-05,
275
+ "loss": 0.9568,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.7602339181286549,
280
+ "grad_norm": 0.7395185232162476,
281
+ "learning_rate": 2.916190305996286e-05,
282
+ "loss": 0.9299,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.7797270955165692,
287
+ "grad_norm": 0.7606521844863892,
288
+ "learning_rate": 2.909686143930287e-05,
289
+ "loss": 0.9247,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.7992202729044834,
294
+ "grad_norm": 0.779329776763916,
295
+ "learning_rate": 2.902946753875131e-05,
296
+ "loss": 0.906,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.8187134502923976,
301
+ "grad_norm": 0.7310610413551331,
302
+ "learning_rate": 2.895973260402537e-05,
303
+ "loss": 0.8739,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 0.8382066276803118,
308
+ "grad_norm": 0.8392149806022644,
309
+ "learning_rate": 2.8887668271480098e-05,
310
+ "loss": 0.8959,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 0.8576998050682261,
315
+ "grad_norm": 1.0112305879592896,
316
+ "learning_rate": 2.8813286566166674e-05,
317
+ "loss": 0.9094,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 0.8771929824561403,
322
+ "grad_norm": 0.8116384744644165,
323
+ "learning_rate": 2.873659989982586e-05,
324
+ "loss": 0.8674,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 0.8966861598440545,
329
+ "grad_norm": 0.8890613913536072,
330
+ "learning_rate": 2.8657621068816903e-05,
331
+ "loss": 0.8724,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 0.9161793372319688,
336
+ "grad_norm": 0.901253342628479,
337
+ "learning_rate": 2.857636325198225e-05,
338
+ "loss": 0.8044,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 0.935672514619883,
343
+ "grad_norm": 0.8452696800231934,
344
+ "learning_rate": 2.849284000844849e-05,
345
+ "loss": 0.8755,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 0.9551656920077972,
350
+ "grad_norm": 1.0774387121200562,
351
+ "learning_rate": 2.8407065275363756e-05,
352
+ "loss": 0.8576,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 0.9746588693957114,
357
+ "grad_norm": 0.8810860514640808,
358
+ "learning_rate": 2.8319053365572135e-05,
359
+ "loss": 0.8204,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 0.9941520467836257,
364
+ "grad_norm": 0.8354170322418213,
365
+ "learning_rate": 2.8228818965225325e-05,
366
+ "loss": 0.8506,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 1.0116959064327484,
371
+ "grad_norm": 0.9805569648742676,
372
+ "learning_rate": 2.8136377131332043e-05,
373
+ "loss": 0.7696,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 1.0311890838206628,
378
+ "grad_norm": 0.8466799855232239,
379
+ "learning_rate": 2.8041743289245503e-05,
380
+ "loss": 0.7292,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 1.050682261208577,
385
+ "grad_norm": 0.8261882662773132,
386
+ "learning_rate": 2.7944933230089484e-05,
387
+ "loss": 0.7287,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 1.0701754385964912,
392
+ "grad_norm": 0.9157257080078125,
393
+ "learning_rate": 2.784596310812331e-05,
394
+ "loss": 0.7328,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 1.0896686159844053,
399
+ "grad_norm": 0.8392409682273865,
400
+ "learning_rate": 2.774484943804629e-05,
401
+ "loss": 0.7363,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 1.1091617933723197,
406
+ "grad_norm": 0.8547697067260742,
407
+ "learning_rate": 2.764160909224196e-05,
408
+ "loss": 0.7384,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 1.128654970760234,
413
+ "grad_norm": 0.8612291812896729,
414
+ "learning_rate": 2.7536259297962674e-05,
415
+ "loss": 0.7273,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 1.1481481481481481,
420
+ "grad_norm": 0.8668325543403625,
421
+ "learning_rate": 2.7428817634454973e-05,
422
+ "loss": 0.7188,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 1.1676413255360623,
427
+ "grad_norm": 0.931692898273468,
428
+ "learning_rate": 2.7319302030026207e-05,
429
+ "loss": 0.7064,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 1.1871345029239766,
434
+ "grad_norm": 1.0540717840194702,
435
+ "learning_rate": 2.7207730759052925e-05,
436
+ "loss": 0.6855,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 1.206627680311891,
441
+ "grad_norm": 1.041435718536377,
442
+ "learning_rate": 2.7094122438931513e-05,
443
+ "loss": 0.6789,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 1.226120857699805,
448
+ "grad_norm": 0.9543320536613464,
449
+ "learning_rate": 2.697849602697159e-05,
450
+ "loss": 0.6979,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 1.2456140350877192,
455
+ "grad_norm": 1.0173633098602295,
456
+ "learning_rate": 2.6860870817232682e-05,
457
+ "loss": 0.6924,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 1.2651072124756335,
462
+ "grad_norm": 0.8906193375587463,
463
+ "learning_rate": 2.6741266437304718e-05,
464
+ "loss": 0.6976,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 1.2846003898635479,
469
+ "grad_norm": 1.3355520963668823,
470
+ "learning_rate": 2.661970284503286e-05,
471
+ "loss": 0.646,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 1.304093567251462,
476
+ "grad_norm": 1.012062668800354,
477
+ "learning_rate": 2.6496200325187223e-05,
478
+ "loss": 0.6911,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 1.323586744639376,
483
+ "grad_norm": 0.9941599369049072,
484
+ "learning_rate": 2.6370779486078047e-05,
485
+ "loss": 0.6703,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 1.3430799220272904,
490
+ "grad_norm": 1.0016067028045654,
491
+ "learning_rate": 2.6243461256116892e-05,
492
+ "loss": 0.6903,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 1.3625730994152048,
497
+ "grad_norm": 0.8689593076705933,
498
+ "learning_rate": 2.611426688032439e-05,
499
+ "loss": 0.6504,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 1.3820662768031189,
504
+ "grad_norm": 0.8714726567268372,
505
+ "learning_rate": 2.598321791678519e-05,
506
+ "loss": 0.6562,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 1.401559454191033,
511
+ "grad_norm": 0.9304203987121582,
512
+ "learning_rate": 2.5850336233050677e-05,
513
+ "loss": 0.6671,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 1.4210526315789473,
518
+ "grad_norm": 1.0773100852966309,
519
+ "learning_rate": 2.5715644002489998e-05,
520
+ "loss": 0.6376,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 1.4405458089668617,
525
+ "grad_norm": 0.96257483959198,
526
+ "learning_rate": 2.557916370059012e-05,
527
+ "loss": 0.6263,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 1.4600389863547758,
532
+ "grad_norm": 0.9565174579620361,
533
+ "learning_rate": 2.544091810120543e-05,
534
+ "loss": 0.6413,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 1.47953216374269,
539
+ "grad_norm": 1.0495936870574951,
540
+ "learning_rate": 2.530093027275757e-05,
541
+ "loss": 0.6373,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 1.4990253411306043,
546
+ "grad_norm": 1.0575157403945923,
547
+ "learning_rate": 2.5159223574386117e-05,
548
+ "loss": 0.6373,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 1.5185185185185186,
553
+ "grad_norm": 1.2348133325576782,
554
+ "learning_rate": 2.501582165205074e-05,
555
+ "loss": 0.6296,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 1.5380116959064327,
560
+ "grad_norm": 0.9543783664703369,
561
+ "learning_rate": 2.4870748434585514e-05,
562
+ "loss": 0.6238,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 1.5575048732943468,
567
+ "grad_norm": 1.031792163848877,
568
+ "learning_rate": 2.4724028129706012e-05,
569
+ "loss": 0.6156,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 1.5769980506822612,
574
+ "grad_norm": 1.0421391725540161,
575
+ "learning_rate": 2.4575685219969884e-05,
576
+ "loss": 0.6188,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 1.5964912280701755,
581
+ "grad_norm": 1.0755267143249512,
582
+ "learning_rate": 2.442574445869156e-05,
583
+ "loss": 0.5753,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 1.6159844054580896,
588
+ "grad_norm": 0.9432569146156311,
589
+ "learning_rate": 2.4274230865811763e-05,
590
+ "loss": 0.5878,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 1.6354775828460038,
595
+ "grad_norm": 1.234410047531128,
596
+ "learning_rate": 2.4121169723722566e-05,
597
+ "loss": 0.6097,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 1.654970760233918,
602
+ "grad_norm": 1.4969490766525269,
603
+ "learning_rate": 2.396658657304861e-05,
604
+ "loss": 0.5825,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 1.6744639376218324,
609
+ "grad_norm": 1.0849074125289917,
610
+ "learning_rate": 2.381050720838528e-05,
611
+ "loss": 0.5705,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 1.6939571150097466,
616
+ "grad_norm": 1.682335376739502,
617
+ "learning_rate": 2.3652957673994448e-05,
618
+ "loss": 0.5889,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 1.7134502923976607,
623
+ "grad_norm": 1.1412495374679565,
624
+ "learning_rate": 2.3493964259458603e-05,
625
+ "loss": 0.5789,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 1.732943469785575,
630
+ "grad_norm": 1.067293405532837,
631
+ "learning_rate": 2.3333553495294033e-05,
632
+ "loss": 0.5971,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 1.7524366471734893,
637
+ "grad_norm": 1.291559100151062,
638
+ "learning_rate": 2.317175214852377e-05,
639
+ "loss": 0.577,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 1.7719298245614035,
644
+ "grad_norm": 1.2236227989196777,
645
+ "learning_rate": 2.3008587218211127e-05,
646
+ "loss": 0.578,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 1.7914230019493176,
651
+ "grad_norm": 1.7148844003677368,
652
+ "learning_rate": 2.284408593095446e-05,
653
+ "loss": 0.562,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 1.810916179337232,
658
+ "grad_norm": 1.1242623329162598,
659
+ "learning_rate": 2.2678275736344014e-05,
660
+ "loss": 0.5407,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 1.8304093567251463,
665
+ "grad_norm": 1.1884270906448364,
666
+ "learning_rate": 2.251118430238151e-05,
667
+ "loss": 0.5363,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 1.8499025341130604,
672
+ "grad_norm": 0.9591031074523926,
673
+ "learning_rate": 2.2342839510863323e-05,
674
+ "loss": 0.5671,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 1.8693957115009745,
679
+ "grad_norm": 1.0892689228057861,
680
+ "learning_rate": 2.2173269452727965e-05,
681
+ "loss": 0.5199,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 1.8888888888888888,
686
+ "grad_norm": 0.9958884119987488,
687
+ "learning_rate": 2.200250242336868e-05,
688
+ "loss": 0.5413,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 1.9083820662768032,
693
+ "grad_norm": 1.1685152053833008,
694
+ "learning_rate": 2.183056691791193e-05,
695
+ "loss": 0.5257,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 1.9278752436647173,
700
+ "grad_norm": 1.0781997442245483,
701
+ "learning_rate": 2.1657491626462514e-05,
702
+ "loss": 0.5417,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 1.9473684210526314,
707
+ "grad_norm": 0.943932831287384,
708
+ "learning_rate": 2.1483305429316208e-05,
709
+ "loss": 0.4997,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 1.9668615984405458,
714
+ "grad_norm": 1.057703971862793,
715
+ "learning_rate": 2.1308037392140613e-05,
716
+ "loss": 0.4959,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 1.98635477582846,
721
+ "grad_norm": 1.0127170085906982,
722
+ "learning_rate": 2.113171676112513e-05,
723
+ "loss": 0.4931,
724
+ "step": 510
725
+ }
726
+ ],
727
+ "logging_steps": 5,
728
+ "max_steps": 1280,
729
+ "num_input_tokens_seen": 0,
730
+ "num_train_epochs": 5,
731
+ "save_steps": 2000,
732
+ "stateful_callbacks": {
733
+ "TrainerControl": {
734
+ "args": {
735
+ "should_epoch_stop": false,
736
+ "should_evaluate": false,
737
+ "should_log": false,
738
+ "should_save": true,
739
+ "should_training_stop": false
740
+ },
741
+ "attributes": {}
742
+ }
743
+ },
744
+ "total_flos": 1.1804183649299988e+18,
745
+ "train_batch_size": 2,
746
+ "trial_name": null,
747
+ "trial_params": null
748
+ }
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a098ffc6270ef4911bfdb2d22f94de302c6b671bdf91a3bc5cd3ec9d81e76307
3
+ size 7800
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
hotpotqa/not_grounded/0_128_e5_3e-5/checkpoint-514/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.3-8b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.3-8b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "q_proj",
25
+ "v_proj",
26
+ "gate_proj",
27
+ "up_proj",
28
+ "o_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b6119bcb8aeee90a738af9497970f903813c1649f405c716a2788fe43b6f469
3
+ size 791751704
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step642
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f88045bd6d82193f8e4514187bbb2798651676524ea226b9651428019611790
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ef4704c482539951921fcb331a8ca065431e2569b4d905a7b496266aa840b65
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8986ab3b6dade0671fcd0d6c18c7b4e8735570167545f0506826d532d90222db
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d1c594903c8cfcfe8e0993c14f8381d628a4e157d0043840d7567b815cbe1bd
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dd2fd7d673f3fa4d7b08afbda1e16253f604cc318ef5f736132879b51821f04
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7778d14b4c559506c1bc109ea24464ceea5268caaa5a85580834dbb8a08e0e6f
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b639297c84b275df5df2d93dc9ba444819a9fc75463ee50cbb8232ca0717bdc
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:035640cb191020272db90eb4c468805c56d39f3667d828d9a6ea82ad7f3a50c3
3
+ size 15920
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d2474414aabe8a8cf885ef31a66f3e6221d30ffc8db5478542d6dfbb253e31
3
+ size 1064
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<fim_prefix>",
5
+ "<fim_middle>",
6
+ "<fim_suffix>",
7
+ "<fim_pad>",
8
+ "<filename>",
9
+ "<gh_stars>",
10
+ "<issue_start>",
11
+ "<issue_comment>",
12
+ "<issue_closed>",
13
+ "<jupyter_start>",
14
+ "<jupyter_text>",
15
+ "<jupyter_code>",
16
+ "<jupyter_output>",
17
+ "<empty_output>",
18
+ "<commit_before>",
19
+ "<commit_msg>",
20
+ "<commit_after>",
21
+ "<reponame>"
22
+ ],
23
+ "bos_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "eos_token": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "pad_token": {
38
+ "content": "<|endoftext|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<|endoftext|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/tokenizer_config.json ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<fim_prefix>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<fim_middle>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<fim_suffix>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<fim_pad>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<filename>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<gh_stars>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<issue_start>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_comment>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_closed>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<jupyter_start>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_text>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_code>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_output>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<empty_output>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<commit_before>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<commit_msg>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "17": {
141
+ "content": "<commit_after>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "18": {
149
+ "content": "<reponame>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ }
156
+ },
157
+ "additional_special_tokens": [
158
+ "<|endoftext|>",
159
+ "<fim_prefix>",
160
+ "<fim_middle>",
161
+ "<fim_suffix>",
162
+ "<fim_pad>",
163
+ "<filename>",
164
+ "<gh_stars>",
165
+ "<issue_start>",
166
+ "<issue_comment>",
167
+ "<issue_closed>",
168
+ "<jupyter_start>",
169
+ "<jupyter_text>",
170
+ "<jupyter_code>",
171
+ "<jupyter_output>",
172
+ "<empty_output>",
173
+ "<commit_before>",
174
+ "<commit_msg>",
175
+ "<commit_after>",
176
+ "<reponame>"
177
+ ],
178
+ "bos_token": "<|endoftext|>",
179
+ "clean_up_tokenization_spaces": true,
180
+ "eos_token": "<|endoftext|>",
181
+ "extra_special_tokens": {},
182
+ "model_max_length": 8192,
183
+ "pad_token": "<|endoftext|>",
184
+ "padding_side": "left",
185
+ "tokenizer_class": "GPT2Tokenizer",
186
+ "unk_token": "<|endoftext|>",
187
+ "vocab_size": 49152
188
+ }
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/trainer_state.json ADDED
@@ -0,0 +1,930 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 642,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.02336448598130841,
14
+ "grad_norm": 0.9846668243408203,
15
+ "learning_rate": 2.222222222222222e-06,
16
+ "loss": 1.3054,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.04672897196261682,
21
+ "grad_norm": 0.6714785099029541,
22
+ "learning_rate": 4.9999999999999996e-06,
23
+ "loss": 1.3098,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.07009345794392523,
28
+ "grad_norm": 0.5717726945877075,
29
+ "learning_rate": 7.777777777777777e-06,
30
+ "loss": 1.2853,
31
+ "step": 15
32
+ },
33
+ {
34
+ "epoch": 0.09345794392523364,
35
+ "grad_norm": 0.4370105266571045,
36
+ "learning_rate": 1.0555555555555555e-05,
37
+ "loss": 1.2847,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.11682242990654206,
42
+ "grad_norm": 0.47119808197021484,
43
+ "learning_rate": 1.3333333333333333e-05,
44
+ "loss": 1.2456,
45
+ "step": 25
46
+ },
47
+ {
48
+ "epoch": 0.14018691588785046,
49
+ "grad_norm": 0.3612341582775116,
50
+ "learning_rate": 1.6111111111111115e-05,
51
+ "loss": 1.2906,
52
+ "step": 30
53
+ },
54
+ {
55
+ "epoch": 0.16355140186915887,
56
+ "grad_norm": 0.4175552427768707,
57
+ "learning_rate": 1.888888888888889e-05,
58
+ "loss": 1.2321,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.18691588785046728,
63
+ "grad_norm": 0.3725614547729492,
64
+ "learning_rate": 2.1666666666666667e-05,
65
+ "loss": 1.2422,
66
+ "step": 40
67
+ },
68
+ {
69
+ "epoch": 0.2102803738317757,
70
+ "grad_norm": 0.3745448887348175,
71
+ "learning_rate": 2.4444444444444445e-05,
72
+ "loss": 1.166,
73
+ "step": 45
74
+ },
75
+ {
76
+ "epoch": 0.2336448598130841,
77
+ "grad_norm": 0.3536573648452759,
78
+ "learning_rate": 2.7222222222222223e-05,
79
+ "loss": 1.1849,
80
+ "step": 50
81
+ },
82
+ {
83
+ "epoch": 0.2570093457943925,
84
+ "grad_norm": 0.376469224691391,
85
+ "learning_rate": 3e-05,
86
+ "loss": 1.1594,
87
+ "step": 55
88
+ },
89
+ {
90
+ "epoch": 0.2803738317757009,
91
+ "grad_norm": 0.40825456380844116,
92
+ "learning_rate": 2.9998207311011924e-05,
93
+ "loss": 1.1643,
94
+ "step": 60
95
+ },
96
+ {
97
+ "epoch": 0.3037383177570093,
98
+ "grad_norm": 0.4157944917678833,
99
+ "learning_rate": 2.9992829672545544e-05,
100
+ "loss": 1.1724,
101
+ "step": 65
102
+ },
103
+ {
104
+ "epoch": 0.32710280373831774,
105
+ "grad_norm": 0.40997833013534546,
106
+ "learning_rate": 2.9983868369991955e-05,
107
+ "loss": 1.1053,
108
+ "step": 70
109
+ },
110
+ {
111
+ "epoch": 0.35046728971962615,
112
+ "grad_norm": 0.4295913279056549,
113
+ "learning_rate": 2.997132554532828e-05,
114
+ "loss": 1.1017,
115
+ "step": 75
116
+ },
117
+ {
118
+ "epoch": 0.37383177570093457,
119
+ "grad_norm": 0.4532783329486847,
120
+ "learning_rate": 2.9955204196605673e-05,
121
+ "loss": 1.0855,
122
+ "step": 80
123
+ },
124
+ {
125
+ "epoch": 0.397196261682243,
126
+ "grad_norm": 0.504647433757782,
127
+ "learning_rate": 2.9935508177232713e-05,
128
+ "loss": 1.0616,
129
+ "step": 85
130
+ },
131
+ {
132
+ "epoch": 0.4205607476635514,
133
+ "grad_norm": 0.457560658454895,
134
+ "learning_rate": 2.9912242195054337e-05,
135
+ "loss": 1.0598,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 0.4439252336448598,
140
+ "grad_norm": 0.46719983220100403,
141
+ "learning_rate": 2.9885411811226547e-05,
142
+ "loss": 1.0415,
143
+ "step": 95
144
+ },
145
+ {
146
+ "epoch": 0.4672897196261682,
147
+ "grad_norm": 0.5554174184799194,
148
+ "learning_rate": 2.9855023438887168e-05,
149
+ "loss": 1.0701,
150
+ "step": 100
151
+ },
152
+ {
153
+ "epoch": 0.49065420560747663,
154
+ "grad_norm": 0.495527058839798,
155
+ "learning_rate": 2.9821084341622924e-05,
156
+ "loss": 1.0041,
157
+ "step": 105
158
+ },
159
+ {
160
+ "epoch": 0.514018691588785,
161
+ "grad_norm": 0.5037195086479187,
162
+ "learning_rate": 2.9783602631733272e-05,
163
+ "loss": 1.0189,
164
+ "step": 110
165
+ },
166
+ {
167
+ "epoch": 0.5373831775700935,
168
+ "grad_norm": 0.5182456374168396,
169
+ "learning_rate": 2.974258726829136e-05,
170
+ "loss": 0.9733,
171
+ "step": 115
172
+ },
173
+ {
174
+ "epoch": 0.5607476635514018,
175
+ "grad_norm": 0.5680457949638367,
176
+ "learning_rate": 2.9698048055002566e-05,
177
+ "loss": 0.9747,
178
+ "step": 120
179
+ },
180
+ {
181
+ "epoch": 0.5841121495327103,
182
+ "grad_norm": 0.5237352252006531,
183
+ "learning_rate": 2.9649995637861182e-05,
184
+ "loss": 0.9813,
185
+ "step": 125
186
+ },
187
+ {
188
+ "epoch": 0.6074766355140186,
189
+ "grad_norm": 0.6517245769500732,
190
+ "learning_rate": 2.959844150260576e-05,
191
+ "loss": 0.8996,
192
+ "step": 130
193
+ },
194
+ {
195
+ "epoch": 0.6308411214953271,
196
+ "grad_norm": 0.624985933303833,
197
+ "learning_rate": 2.95433979719737e-05,
198
+ "loss": 0.9549,
199
+ "step": 135
200
+ },
201
+ {
202
+ "epoch": 0.6542056074766355,
203
+ "grad_norm": 0.721772313117981,
204
+ "learning_rate": 2.9484878202755834e-05,
205
+ "loss": 0.9164,
206
+ "step": 140
207
+ },
208
+ {
209
+ "epoch": 0.677570093457944,
210
+ "grad_norm": 0.6142625212669373,
211
+ "learning_rate": 2.942289618265161e-05,
212
+ "loss": 0.9402,
213
+ "step": 145
214
+ },
215
+ {
216
+ "epoch": 0.7009345794392523,
217
+ "grad_norm": 0.7766824960708618,
218
+ "learning_rate": 2.9357466726925683e-05,
219
+ "loss": 0.8848,
220
+ "step": 150
221
+ },
222
+ {
223
+ "epoch": 0.7242990654205608,
224
+ "grad_norm": 0.7013019323348999,
225
+ "learning_rate": 2.9288605474866687e-05,
226
+ "loss": 0.8473,
227
+ "step": 155
228
+ },
229
+ {
230
+ "epoch": 0.7476635514018691,
231
+ "grad_norm": 0.6742664575576782,
232
+ "learning_rate": 2.921632888604906e-05,
233
+ "loss": 0.87,
234
+ "step": 160
235
+ },
236
+ {
237
+ "epoch": 0.7710280373831776,
238
+ "grad_norm": 0.6647071838378906,
239
+ "learning_rate": 2.9140654236398786e-05,
240
+ "loss": 0.8952,
241
+ "step": 165
242
+ },
243
+ {
244
+ "epoch": 0.794392523364486,
245
+ "grad_norm": 0.8462722897529602,
246
+ "learning_rate": 2.906159961406401e-05,
247
+ "loss": 0.8788,
248
+ "step": 170
249
+ },
250
+ {
251
+ "epoch": 0.8177570093457944,
252
+ "grad_norm": 0.756624162197113,
253
+ "learning_rate": 2.8979183915091518e-05,
254
+ "loss": 0.8308,
255
+ "step": 175
256
+ },
257
+ {
258
+ "epoch": 0.8411214953271028,
259
+ "grad_norm": 0.7348244190216064,
260
+ "learning_rate": 2.8893426838910116e-05,
261
+ "loss": 0.8373,
262
+ "step": 180
263
+ },
264
+ {
265
+ "epoch": 0.8644859813084113,
266
+ "grad_norm": 0.7541269659996033,
267
+ "learning_rate": 2.8804348883621948e-05,
268
+ "loss": 0.8233,
269
+ "step": 185
270
+ },
271
+ {
272
+ "epoch": 0.8878504672897196,
273
+ "grad_norm": 0.8302907943725586,
274
+ "learning_rate": 2.8711971341102952e-05,
275
+ "loss": 0.7956,
276
+ "step": 190
277
+ },
278
+ {
279
+ "epoch": 0.9112149532710281,
280
+ "grad_norm": 0.7943097949028015,
281
+ "learning_rate": 2.861631629191356e-05,
282
+ "loss": 0.7513,
283
+ "step": 195
284
+ },
285
+ {
286
+ "epoch": 0.9345794392523364,
287
+ "grad_norm": 0.8179221749305725,
288
+ "learning_rate": 2.8517406600020876e-05,
289
+ "loss": 0.8219,
290
+ "step": 200
291
+ },
292
+ {
293
+ "epoch": 0.9579439252336449,
294
+ "grad_norm": 0.779038667678833,
295
+ "learning_rate": 2.841526590733364e-05,
296
+ "loss": 0.7927,
297
+ "step": 205
298
+ },
299
+ {
300
+ "epoch": 0.9813084112149533,
301
+ "grad_norm": 0.8207105994224548,
302
+ "learning_rate": 2.8309918628051177e-05,
303
+ "loss": 0.7336,
304
+ "step": 210
305
+ },
306
+ {
307
+ "epoch": 1.0046728971962617,
308
+ "grad_norm": 0.9244384765625,
309
+ "learning_rate": 2.8201389942827827e-05,
310
+ "loss": 0.7452,
311
+ "step": 215
312
+ },
313
+ {
314
+ "epoch": 1.02803738317757,
315
+ "grad_norm": 1.1412228345870972,
316
+ "learning_rate": 2.8089705792754107e-05,
317
+ "loss": 0.6897,
318
+ "step": 220
319
+ },
320
+ {
321
+ "epoch": 1.0514018691588785,
322
+ "grad_norm": 0.9332628846168518,
323
+ "learning_rate": 2.797489287315614e-05,
324
+ "loss": 0.6885,
325
+ "step": 225
326
+ },
327
+ {
328
+ "epoch": 1.074766355140187,
329
+ "grad_norm": 0.9464613199234009,
330
+ "learning_rate": 2.7856978627214824e-05,
331
+ "loss": 0.6619,
332
+ "step": 230
333
+ },
334
+ {
335
+ "epoch": 1.0981308411214954,
336
+ "grad_norm": 0.887984037399292,
337
+ "learning_rate": 2.7735991239406184e-05,
338
+ "loss": 0.6558,
339
+ "step": 235
340
+ },
341
+ {
342
+ "epoch": 1.1214953271028036,
343
+ "grad_norm": 1.1088521480560303,
344
+ "learning_rate": 2.7611959628764595e-05,
345
+ "loss": 0.6338,
346
+ "step": 240
347
+ },
348
+ {
349
+ "epoch": 1.144859813084112,
350
+ "grad_norm": 0.9827927947044373,
351
+ "learning_rate": 2.748491344197041e-05,
352
+ "loss": 0.6683,
353
+ "step": 245
354
+ },
355
+ {
356
+ "epoch": 1.1682242990654206,
357
+ "grad_norm": 0.9858003854751587,
358
+ "learning_rate": 2.735488304626362e-05,
359
+ "loss": 0.6383,
360
+ "step": 250
361
+ },
362
+ {
363
+ "epoch": 1.191588785046729,
364
+ "grad_norm": 0.9236980676651001,
365
+ "learning_rate": 2.7221899522185365e-05,
366
+ "loss": 0.6244,
367
+ "step": 255
368
+ },
369
+ {
370
+ "epoch": 1.2149532710280373,
371
+ "grad_norm": 0.9229886531829834,
372
+ "learning_rate": 2.708599465614888e-05,
373
+ "loss": 0.6332,
374
+ "step": 260
375
+ },
376
+ {
377
+ "epoch": 1.2383177570093458,
378
+ "grad_norm": 1.2654668092727661,
379
+ "learning_rate": 2.6947200932841723e-05,
380
+ "loss": 0.6041,
381
+ "step": 265
382
+ },
383
+ {
384
+ "epoch": 1.2616822429906542,
385
+ "grad_norm": 1.0240631103515625,
386
+ "learning_rate": 2.680555152746115e-05,
387
+ "loss": 0.6264,
388
+ "step": 270
389
+ },
390
+ {
391
+ "epoch": 1.2850467289719627,
392
+ "grad_norm": 1.0189911127090454,
393
+ "learning_rate": 2.6661080297784387e-05,
394
+ "loss": 0.6265,
395
+ "step": 275
396
+ },
397
+ {
398
+ "epoch": 1.308411214953271,
399
+ "grad_norm": 0.9291442632675171,
400
+ "learning_rate": 2.6513821776075772e-05,
401
+ "loss": 0.5748,
402
+ "step": 280
403
+ },
404
+ {
405
+ "epoch": 1.3317757009345794,
406
+ "grad_norm": 0.9921167492866516,
407
+ "learning_rate": 2.6363811160832678e-05,
408
+ "loss": 0.609,
409
+ "step": 285
410
+ },
411
+ {
412
+ "epoch": 1.355140186915888,
413
+ "grad_norm": 0.9764885306358337,
414
+ "learning_rate": 2.621108430837217e-05,
415
+ "loss": 0.5683,
416
+ "step": 290
417
+ },
418
+ {
419
+ "epoch": 1.3785046728971961,
420
+ "grad_norm": 1.087034821510315,
421
+ "learning_rate": 2.605567772426046e-05,
422
+ "loss": 0.5731,
423
+ "step": 295
424
+ },
425
+ {
426
+ "epoch": 1.4018691588785046,
427
+ "grad_norm": 0.966983437538147,
428
+ "learning_rate": 2.5897628554587152e-05,
429
+ "loss": 0.5679,
430
+ "step": 300
431
+ },
432
+ {
433
+ "epoch": 1.425233644859813,
434
+ "grad_norm": 0.9949087500572205,
435
+ "learning_rate": 2.573697457708639e-05,
436
+ "loss": 0.573,
437
+ "step": 305
438
+ },
439
+ {
440
+ "epoch": 1.4485981308411215,
441
+ "grad_norm": 1.0144646167755127,
442
+ "learning_rate": 2.5573754192107015e-05,
443
+ "loss": 0.5505,
444
+ "step": 310
445
+ },
446
+ {
447
+ "epoch": 1.47196261682243,
448
+ "grad_norm": 1.0582274198532104,
449
+ "learning_rate": 2.5408006413433937e-05,
450
+ "loss": 0.5335,
451
+ "step": 315
452
+ },
453
+ {
454
+ "epoch": 1.4953271028037383,
455
+ "grad_norm": 0.98384690284729,
456
+ "learning_rate": 2.5239770858962833e-05,
457
+ "loss": 0.6096,
458
+ "step": 320
459
+ },
460
+ {
461
+ "epoch": 1.5186915887850467,
462
+ "grad_norm": 0.9911113381385803,
463
+ "learning_rate": 2.5069087741230493e-05,
464
+ "loss": 0.5624,
465
+ "step": 325
466
+ },
467
+ {
468
+ "epoch": 1.542056074766355,
469
+ "grad_norm": 1.0836067199707031,
470
+ "learning_rate": 2.4895997857802997e-05,
471
+ "loss": 0.5683,
472
+ "step": 330
473
+ },
474
+ {
475
+ "epoch": 1.5654205607476634,
476
+ "grad_norm": 0.9900575876235962,
477
+ "learning_rate": 2.472054258152408e-05,
478
+ "loss": 0.549,
479
+ "step": 335
480
+ },
481
+ {
482
+ "epoch": 1.588785046728972,
483
+ "grad_norm": 1.1659897565841675,
484
+ "learning_rate": 2.454276385062596e-05,
485
+ "loss": 0.5428,
486
+ "step": 340
487
+ },
488
+ {
489
+ "epoch": 1.6121495327102804,
490
+ "grad_norm": 1.314231514930725,
491
+ "learning_rate": 2.4362704158705064e-05,
492
+ "loss": 0.5119,
493
+ "step": 345
494
+ },
495
+ {
496
+ "epoch": 1.6355140186915889,
497
+ "grad_norm": 0.9947055578231812,
498
+ "learning_rate": 2.4180406544564983e-05,
499
+ "loss": 0.5302,
500
+ "step": 350
501
+ },
502
+ {
503
+ "epoch": 1.6588785046728973,
504
+ "grad_norm": 1.0473575592041016,
505
+ "learning_rate": 2.39959145819291e-05,
506
+ "loss": 0.5321,
507
+ "step": 355
508
+ },
509
+ {
510
+ "epoch": 1.6822429906542056,
511
+ "grad_norm": 1.1833536624908447,
512
+ "learning_rate": 2.380927236902539e-05,
513
+ "loss": 0.5358,
514
+ "step": 360
515
+ },
516
+ {
517
+ "epoch": 1.705607476635514,
518
+ "grad_norm": 1.179697036743164,
519
+ "learning_rate": 2.3620524518045826e-05,
520
+ "loss": 0.507,
521
+ "step": 365
522
+ },
523
+ {
524
+ "epoch": 1.7289719626168223,
525
+ "grad_norm": 1.0846567153930664,
526
+ "learning_rate": 2.3429716144482947e-05,
527
+ "loss": 0.501,
528
+ "step": 370
529
+ },
530
+ {
531
+ "epoch": 1.7523364485981308,
532
+ "grad_norm": 1.0222374200820923,
533
+ "learning_rate": 2.323689285634609e-05,
534
+ "loss": 0.5085,
535
+ "step": 375
536
+ },
537
+ {
538
+ "epoch": 1.7757009345794392,
539
+ "grad_norm": 1.3095283508300781,
540
+ "learning_rate": 2.304210074325996e-05,
541
+ "loss": 0.4818,
542
+ "step": 380
543
+ },
544
+ {
545
+ "epoch": 1.7990654205607477,
546
+ "grad_norm": 1.1077048778533936,
547
+ "learning_rate": 2.2845386365448043e-05,
548
+ "loss": 0.4877,
549
+ "step": 385
550
+ },
551
+ {
552
+ "epoch": 1.8224299065420562,
553
+ "grad_norm": 1.181553602218628,
554
+ "learning_rate": 2.2646796742603516e-05,
555
+ "loss": 0.4752,
556
+ "step": 390
557
+ },
558
+ {
559
+ "epoch": 1.8457943925233646,
560
+ "grad_norm": 0.9620625972747803,
561
+ "learning_rate": 2.2446379342650396e-05,
562
+ "loss": 0.4793,
563
+ "step": 395
564
+ },
565
+ {
566
+ "epoch": 1.8691588785046729,
567
+ "grad_norm": 1.1335831880569458,
568
+ "learning_rate": 2.224418207039746e-05,
569
+ "loss": 0.488,
570
+ "step": 400
571
+ },
572
+ {
573
+ "epoch": 1.8925233644859814,
574
+ "grad_norm": 1.0170129537582397,
575
+ "learning_rate": 2.204025325608783e-05,
576
+ "loss": 0.4817,
577
+ "step": 405
578
+ },
579
+ {
580
+ "epoch": 1.9158878504672896,
581
+ "grad_norm": 1.1246532201766968,
582
+ "learning_rate": 2.1834641643846807e-05,
583
+ "loss": 0.4863,
584
+ "step": 410
585
+ },
586
+ {
587
+ "epoch": 1.939252336448598,
588
+ "grad_norm": 1.0550944805145264,
589
+ "learning_rate": 2.1627396380030803e-05,
590
+ "loss": 0.49,
591
+ "step": 415
592
+ },
593
+ {
594
+ "epoch": 1.9626168224299065,
595
+ "grad_norm": 1.0045976638793945,
596
+ "learning_rate": 2.141856700148012e-05,
597
+ "loss": 0.4585,
598
+ "step": 420
599
+ },
600
+ {
601
+ "epoch": 1.985981308411215,
602
+ "grad_norm": 1.1983375549316406,
603
+ "learning_rate": 2.1208203423678402e-05,
604
+ "loss": 0.4538,
605
+ "step": 425
606
+ },
607
+ {
608
+ "epoch": 2.0093457943925235,
609
+ "grad_norm": 1.2544827461242676,
610
+ "learning_rate": 2.099635592882157e-05,
611
+ "loss": 0.4146,
612
+ "step": 430
613
+ },
614
+ {
615
+ "epoch": 2.032710280373832,
616
+ "grad_norm": 1.2281593084335327,
617
+ "learning_rate": 2.0783075153799112e-05,
618
+ "loss": 0.375,
619
+ "step": 435
620
+ },
621
+ {
622
+ "epoch": 2.05607476635514,
623
+ "grad_norm": 1.1033180952072144,
624
+ "learning_rate": 2.0568412078090597e-05,
625
+ "loss": 0.3817,
626
+ "step": 440
627
+ },
628
+ {
629
+ "epoch": 2.0794392523364484,
630
+ "grad_norm": 1.1841470003128052,
631
+ "learning_rate": 2.0352418011580293e-05,
632
+ "loss": 0.3811,
633
+ "step": 445
634
+ },
635
+ {
636
+ "epoch": 2.102803738317757,
637
+ "grad_norm": 1.223242998123169,
638
+ "learning_rate": 2.0135144582292796e-05,
639
+ "loss": 0.3673,
640
+ "step": 450
641
+ },
642
+ {
643
+ "epoch": 2.1261682242990654,
644
+ "grad_norm": 1.1610691547393799,
645
+ "learning_rate": 1.991664372405265e-05,
646
+ "loss": 0.3813,
647
+ "step": 455
648
+ },
649
+ {
650
+ "epoch": 2.149532710280374,
651
+ "grad_norm": 1.187243938446045,
652
+ "learning_rate": 1.9696967664070854e-05,
653
+ "loss": 0.3899,
654
+ "step": 460
655
+ },
656
+ {
657
+ "epoch": 2.1728971962616823,
658
+ "grad_norm": 1.1279627084732056,
659
+ "learning_rate": 1.947616891046123e-05,
660
+ "loss": 0.3744,
661
+ "step": 465
662
+ },
663
+ {
664
+ "epoch": 2.196261682242991,
665
+ "grad_norm": 1.23040771484375,
666
+ "learning_rate": 1.925430023968967e-05,
667
+ "loss": 0.3773,
668
+ "step": 470
669
+ },
670
+ {
671
+ "epoch": 2.2196261682242993,
672
+ "grad_norm": 1.1494715213775635,
673
+ "learning_rate": 1.9031414683959214e-05,
674
+ "loss": 0.3782,
675
+ "step": 475
676
+ },
677
+ {
678
+ "epoch": 2.2429906542056073,
679
+ "grad_norm": 1.3942996263504028,
680
+ "learning_rate": 1.8807565518534055e-05,
681
+ "loss": 0.3604,
682
+ "step": 480
683
+ },
684
+ {
685
+ "epoch": 2.2663551401869158,
686
+ "grad_norm": 1.135150671005249,
687
+ "learning_rate": 1.858280624900537e-05,
688
+ "loss": 0.3621,
689
+ "step": 485
690
+ },
691
+ {
692
+ "epoch": 2.289719626168224,
693
+ "grad_norm": 1.2644059658050537,
694
+ "learning_rate": 1.835719059850215e-05,
695
+ "loss": 0.3579,
696
+ "step": 490
697
+ },
698
+ {
699
+ "epoch": 2.3130841121495327,
700
+ "grad_norm": 1.16321861743927,
701
+ "learning_rate": 1.813077249485003e-05,
702
+ "loss": 0.3781,
703
+ "step": 495
704
+ },
705
+ {
706
+ "epoch": 2.336448598130841,
707
+ "grad_norm": 1.1858952045440674,
708
+ "learning_rate": 1.7903606057681143e-05,
709
+ "loss": 0.3489,
710
+ "step": 500
711
+ },
712
+ {
713
+ "epoch": 2.3598130841121496,
714
+ "grad_norm": 1.2584055662155151,
715
+ "learning_rate": 1.7675745585498224e-05,
716
+ "loss": 0.3238,
717
+ "step": 505
718
+ },
719
+ {
720
+ "epoch": 2.383177570093458,
721
+ "grad_norm": 1.1378344297409058,
722
+ "learning_rate": 1.744724554269583e-05,
723
+ "loss": 0.3632,
724
+ "step": 510
725
+ },
726
+ {
727
+ "epoch": 2.406542056074766,
728
+ "grad_norm": 1.1574376821517944,
729
+ "learning_rate": 1.7218160546542037e-05,
730
+ "loss": 0.3151,
731
+ "step": 515
732
+ },
733
+ {
734
+ "epoch": 2.4299065420560746,
735
+ "grad_norm": 1.0761138200759888,
736
+ "learning_rate": 1.69885453541235e-05,
737
+ "loss": 0.327,
738
+ "step": 520
739
+ },
740
+ {
741
+ "epoch": 2.453271028037383,
742
+ "grad_norm": 1.1991745233535767,
743
+ "learning_rate": 1.6758454849257147e-05,
744
+ "loss": 0.3239,
745
+ "step": 525
746
+ },
747
+ {
748
+ "epoch": 2.4766355140186915,
749
+ "grad_norm": 1.3082544803619385,
750
+ "learning_rate": 1.652794402937156e-05,
751
+ "loss": 0.3149,
752
+ "step": 530
753
+ },
754
+ {
755
+ "epoch": 2.5,
756
+ "grad_norm": 1.2072352170944214,
757
+ "learning_rate": 1.6297067992361185e-05,
758
+ "loss": 0.3252,
759
+ "step": 535
760
+ },
761
+ {
762
+ "epoch": 2.5233644859813085,
763
+ "grad_norm": 1.217516303062439,
764
+ "learning_rate": 1.6065881923416592e-05,
765
+ "loss": 0.3288,
766
+ "step": 540
767
+ },
768
+ {
769
+ "epoch": 2.546728971962617,
770
+ "grad_norm": 1.1310899257659912,
771
+ "learning_rate": 1.5834441081833768e-05,
772
+ "loss": 0.3466,
773
+ "step": 545
774
+ },
775
+ {
776
+ "epoch": 2.5700934579439254,
777
+ "grad_norm": 1.1097090244293213,
778
+ "learning_rate": 1.56028007878058e-05,
779
+ "loss": 0.3285,
780
+ "step": 550
781
+ },
782
+ {
783
+ "epoch": 2.593457943925234,
784
+ "grad_norm": 1.1151643991470337,
785
+ "learning_rate": 1.5371016409199926e-05,
786
+ "loss": 0.3005,
787
+ "step": 555
788
+ },
789
+ {
790
+ "epoch": 2.616822429906542,
791
+ "grad_norm": 1.2807705402374268,
792
+ "learning_rate": 1.5139143348323227e-05,
793
+ "loss": 0.3094,
794
+ "step": 560
795
+ },
796
+ {
797
+ "epoch": 2.6401869158878504,
798
+ "grad_norm": 1.1719436645507812,
799
+ "learning_rate": 1.4907237028680091e-05,
800
+ "loss": 0.3091,
801
+ "step": 565
802
+ },
803
+ {
804
+ "epoch": 2.663551401869159,
805
+ "grad_norm": 1.2889381647109985,
806
+ "learning_rate": 1.4675352881724576e-05,
807
+ "loss": 0.309,
808
+ "step": 570
809
+ },
810
+ {
811
+ "epoch": 2.6869158878504673,
812
+ "grad_norm": 1.2569345235824585,
813
+ "learning_rate": 1.4443546333610923e-05,
814
+ "loss": 0.2934,
815
+ "step": 575
816
+ },
817
+ {
818
+ "epoch": 2.710280373831776,
819
+ "grad_norm": 1.1071770191192627,
820
+ "learning_rate": 1.4211872791945282e-05,
821
+ "loss": 0.297,
822
+ "step": 580
823
+ },
824
+ {
825
+ "epoch": 2.7336448598130842,
826
+ "grad_norm": 1.2480145692825317,
827
+ "learning_rate": 1.3980387632541923e-05,
828
+ "loss": 0.3076,
829
+ "step": 585
830
+ },
831
+ {
832
+ "epoch": 2.7570093457943923,
833
+ "grad_norm": 1.2675397396087646,
834
+ "learning_rate": 1.374914618618699e-05,
835
+ "loss": 0.3112,
836
+ "step": 590
837
+ },
838
+ {
839
+ "epoch": 2.7803738317757007,
840
+ "grad_norm": 1.1788510084152222,
841
+ "learning_rate": 1.3518203725413086e-05,
842
+ "loss": 0.3028,
843
+ "step": 595
844
+ },
845
+ {
846
+ "epoch": 2.803738317757009,
847
+ "grad_norm": 1.194700002670288,
848
+ "learning_rate": 1.3287615451287722e-05,
849
+ "loss": 0.3172,
850
+ "step": 600
851
+ },
852
+ {
853
+ "epoch": 2.8271028037383177,
854
+ "grad_norm": 1.2842059135437012,
855
+ "learning_rate": 1.3057436480218866e-05,
856
+ "loss": 0.308,
857
+ "step": 605
858
+ },
859
+ {
860
+ "epoch": 2.850467289719626,
861
+ "grad_norm": 1.28480863571167,
862
+ "learning_rate": 1.2827721830780755e-05,
863
+ "loss": 0.2993,
864
+ "step": 610
865
+ },
866
+ {
867
+ "epoch": 2.8738317757009346,
868
+ "grad_norm": 1.30231511592865,
869
+ "learning_rate": 1.2598526410563037e-05,
870
+ "loss": 0.2897,
871
+ "step": 615
872
+ },
873
+ {
874
+ "epoch": 2.897196261682243,
875
+ "grad_norm": 1.3034412860870361,
876
+ "learning_rate": 1.2369905003046514e-05,
877
+ "loss": 0.2863,
878
+ "step": 620
879
+ },
880
+ {
881
+ "epoch": 2.9205607476635516,
882
+ "grad_norm": 1.1544686555862427,
883
+ "learning_rate": 1.2141912254508477e-05,
884
+ "loss": 0.2871,
885
+ "step": 625
886
+ },
887
+ {
888
+ "epoch": 2.94392523364486,
889
+ "grad_norm": 1.2238121032714844,
890
+ "learning_rate": 1.1914602660960873e-05,
891
+ "loss": 0.2781,
892
+ "step": 630
893
+ },
894
+ {
895
+ "epoch": 2.9672897196261685,
896
+ "grad_norm": 1.3411394357681274,
897
+ "learning_rate": 1.1688030555124409e-05,
898
+ "loss": 0.2776,
899
+ "step": 635
900
+ },
901
+ {
902
+ "epoch": 2.9906542056074765,
903
+ "grad_norm": 1.2078008651733398,
904
+ "learning_rate": 1.1462250093441632e-05,
905
+ "loss": 0.2511,
906
+ "step": 640
907
+ }
908
+ ],
909
+ "logging_steps": 5,
910
+ "max_steps": 1070,
911
+ "num_input_tokens_seen": 0,
912
+ "num_train_epochs": 5,
913
+ "save_steps": 2000,
914
+ "stateful_callbacks": {
915
+ "TrainerControl": {
916
+ "args": {
917
+ "should_epoch_stop": false,
918
+ "should_evaluate": false,
919
+ "should_log": false,
920
+ "should_save": true,
921
+ "should_training_stop": false
922
+ },
923
+ "attributes": {}
924
+ }
925
+ },
926
+ "total_flos": 1.4791784940290703e+18,
927
+ "train_batch_size": 2,
928
+ "trial_name": null,
929
+ "trial_params": null
930
+ }
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97291ef091bf25732b2bcf43f778fd55f897d7eb6fb98a7aaa7f6d4f5b994519
3
+ size 7800
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
hotpotqa/not_grounded/1_128_e5_3e-5/checkpoint-642/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.3-8b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.3-8b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "v_proj",
25
+ "q_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "down_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd82eaa7feed84c14a6210930bd581d2e7a36dd96b50c55f0c3f816ba812f573
3
+ size 791751704
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step682
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b057049dd3265ea3e5772b8b789fac5cdde9997724c3886773877506365eef21
3
+ size 15920
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed24384ec43550c3b40277b675faa7da3106c41739b5e487403bdfe4ef6ad22c
3
+ size 15920
hotpotqa/not_grounded/2_128_e5_3e-5/checkpoint-684/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98297d4c36b94b26b02d1e833595bf71dc3faf52ae85486c90224de1e19ef9b0
3
+ size 15920