Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- amazon_reviews_multi
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- Text Classification
|
9 |
+
- Pytorch
|
10 |
+
- Sentiment_Analysis
|
11 |
+
- Deberta
|
12 |
+
---
|
13 |
+
# Deberta for Sentiment Analysis
|
14 |
+
|
15 |
+
This model has been trained on over 400k reviews from Amazon's multi-reviews dataset.
|
16 |
+
|
17 |
+
## How to use the model
|
18 |
+
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
22 |
+
|
23 |
+
def get_sentiment(sentence):
|
24 |
+
bert_dict = {}
|
25 |
+
vectors = tokenizer(sentence, return_tensors='pt').to(device)
|
26 |
+
outputs = bert_model(**vectors).logits
|
27 |
+
probs = torch.nn.functional.softmax(outputs, dim = 1)[0]
|
28 |
+
bert_dict['neg'] = round(probs[0].item(), 3)
|
29 |
+
bert_dict['neu'] = round(probs[1].item(), 3)
|
30 |
+
bert_dict['pos'] = round(probs[2].item(), 3)
|
31 |
+
return bert_dict
|
32 |
+
|
33 |
+
MODEL_NAME = 'RashidNLP/Amazon-Deberta-Base-Sentiment'
|
34 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
+
|
36 |
+
bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device)
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
38 |
+
|
39 |
+
get_sentiment("This is quite a mess you have made")
|
40 |
+
|
41 |
+
```
|
42 |
+
|