RaphaelReinauer commited on
Commit
6f303ec
1 Parent(s): 3da1477

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 208.15 +/- 42.12
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000201A7A54B80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000201A7A54C10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000201A7A54CA0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000201A7A54D30>", "_build": "<function ActorCriticPolicy._build at 0x00000201A7A54DC0>", "forward": "<function ActorCriticPolicy.forward at 0x00000201A7A54E50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000201A7A54EE0>", "_predict": "<function ActorCriticPolicy._predict at 0x00000201A7A54F70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000201A7A58040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000201A7A580D0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000201A7A58160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x00000201A7A4CDE0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652307351.2285883, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3szoR8PcW0CUhpRSlIwBbJRN6AOMAXSUR0B8P3F6zE75dX2UKGgGaAloD0MI1bFK6RnlYkCUhpRSlGgVTegDaBZHQHxOLeVLSNR1fZQoaAZoCWgPQwiASL99HYRfQJSGlFKUaBVN6ANoFkdAfFQZK3/gi3V9lChoBmgJaA9DCCv3ArNCR0hAlIaUUpRoFU3oA2gWR0B8WegElme2dX2UKGgGaAloD0MI3nL1Y5P6TkCUhpRSlGgVTegDaBZHQHxgQiFCb+d1fZQoaAZoCWgPQwjYLQJj/d1iQJSGlFKUaBVN6ANoFkdAfGJvL5h0AHV9lChoBmgJaA9DCFRW0/VEpl9AlIaUUpRoFU3oA2gWR0B8zjqLS/j9dX2UKGgGaAloD0MIwHtHjQlhO0CUhpRSlGgVS7hoFkdAfNFI4EOiFnV9lChoBmgJaA9DCA1QGmqUGWFAlIaUUpRoFU3oA2gWR0B81p3Ux20RdX2UKGgGaAloD0MIQs2QKootZECUhpRSlGgVTegDaBZHQHzXACGN70F1fZQoaAZoCWgPQwgcCp+tg8dTQJSGlFKUaBVN6ANoFkdAfN+LZi/fwnV9lChoBmgJaA9DCKDgYkUN4lRAlIaUUpRoFU3oA2gWR0B86hcRlHz6dX2UKGgGaAloD0MIKZgxBWuBWkCUhpRSlGgVTegDaBZHQHztuNxVAA11fZQoaAZoCWgPQwhJLCl3n4daQJSGlFKUaBVN6ANoFkdAfPtGPPszEnV9lChoBmgJaA9DCH09X7NcwVFAlIaUUpRoFU3oA2gWR0B9AXt6X0GvdX2UKGgGaAloD0MI+mGE8Gj9UUCUhpRSlGgVTegDaBZHQH0IuvdM0xd1fZQoaAZoCWgPQwgIsMivH1YzwJSGlFKUaBVL4GgWR0B9CT4Ju2qldX2UKGgGaAloD0MIOnZQieueQ8CUhpRSlGgVTScBaBZHQH0ON+TeO4p1fZQoaAZoCWgPQwi1/pYA/K9VQJSGlFKUaBVN6ANoFkdAfRFe0ojOcHV9lChoBmgJaA9DCGJM+nuprGNAlIaUUpRoFU3oA2gWR0B9GLLIPsiTdX2UKGgGaAloD0MIfLYODvYwYECUhpRSlGgVTegDaBZHQH0lZwsGxD91fZQoaAZoCWgPQwjwGB77WYFrQJSGlFKUaBVNogNoFkdAfSb0WuX/pHV9lChoBmgJaA9DCFbVy++03GBAlIaUUpRoFU3oA2gWR0B9KpYlpoK2dX2UKGgGaAloD0MI/gqZK4MFXECUhpRSlGgVTegDaBZHQH04T3Zf2K51fZQoaAZoCWgPQwikG2FREdBkQJSGlFKUaBVN6ANoFkdAfavQY1pCbHV9lChoBmgJaA9DCD9wlScQ9vS/lIaUUpRoFU0hAWgWR0B9q9ytFKChdX2UKGgGaAloD0MI/tKiPsnHXUCUhpRSlGgVTegDaBZHQH2vRR64Uex1fZQoaAZoCWgPQwhgkV8/xNRdQJSGlFKUaBVN6ANoFkdAfbS99tuUEHV9lChoBmgJaA9DCJmAXyPJuGFAlIaUUpRoFU3oA2gWR0B9tSRbKRuCdX2UKGgGaAloD0MIehowSPpXX0CUhpRSlGgVTegDaBZHQH298uWa+ex1fZQoaAZoCWgPQwjE7dCwmMxgQJSGlFKUaBVN6ANoFkdAfdyOjIq9XnV9lChoBmgJaA9DCJfIBWdw0GBAlIaUUpRoFU3oA2gWR0B949Y5ksjFdX2UKGgGaAloD0MIzNHj9zbKXECUhpRSlGgVTegDaBZHQH3sLD2rXDp1fZQoaAZoCWgPQwiHMenvJbBhQJSGlFKUaBVN6ANoFkdAfey/smfGuXV9lChoBmgJaA9DCGx7uyW5nmJAlIaUUpRoFU3oA2gWR0B98iQMhHLBdX2UKGgGaAloD0MIigCnd/G+XkCUhpRSlGgVTegDaBZHQH31eAZsKsx1fZQoaAZoCWgPQwiOImsNpZRZQJSGlFKUaBVN6ANoFkdAff0N+b3GoHV9lChoBmgJaA9DCCP0M/W6415AlIaUUpRoFU3oA2gWR0B+C4Cih37ldX2UKGgGaAloD0MINxYUBuUXY0CUhpRSlGgVTegDaBZHQH4PXMpw0fp1fZQoaAZoCWgPQwh2+6wy07NpQJSGlFKUaBVNTgNoFkdAfhwu7HyVfXV9lChoBmgJaA9DCGyVYHG4EmNAlIaUUpRoFU3oA2gWR0B+HXqzJIUbdX2UKGgGaAloD0MIBoNr7ug/IECUhpRSlGgVTQ0BaBZHQH4w61gH/tJ1fZQoaAZoCWgPQwhXsmMjEN9fQJSGlFKUaBVN6ANoFkdAfjISQHRkVnV9lChoBmgJaA9DCEcf8wGBrF5AlIaUUpRoFU3oA2gWR0B+kKDmKZUldX2UKGgGaAloD0MINpTai+iAY0CUhpRSlGgVTegDaBZHQH6WASnLq2V1fZQoaAZoCWgPQwh1sWmlkFlgQJSGlFKUaBVN6ANoFkdAfpZoVmBe5XV9lChoBmgJaA9DCK34hsJnsUtAlIaUUpRoFU1PAWgWR0B+mNbt7a7FdX2UKGgGaAloD0MI2QdZFkw7YECUhpRSlGgVTegDaBZHQH6eiRr8BMl1fZQoaAZoCWgPQwidhT3t8KtWQJSGlFKUaBVN6ANoFkdAfrzn752yLXV9lChoBmgJaA9DCOAPP/89aCLAlIaUUpRoFU0yAWgWR0B+vfpeNT99dX2UKGgGaAloD0MIGNLhIYwRRECUhpRSlGgVTegDaBZHQH7EXKr7wa11fZQoaAZoCWgPQwggCmZMwY1hQJSGlFKUaBVN6ANoFkdAfsyN0NjLCHV9lChoBmgJaA9DCA/Tvrm/tmJAlIaUUpRoFU3oA2gWR0B+zSl3yI56dX2UKGgGaAloD0MIl631RULJX0CUhpRSlGgVTegDaBZHQH7SM7U5MlF1fZQoaAZoCWgPQwireCPzyMFjQJSGlFKUaBVN6ANoFkdAftVm6GxlhHV9lChoBmgJaA9DCKopyTocwV1AlIaUUpRoFU3oA2gWR0B+3N+9alk6dX2UKGgGaAloD0MIo7H2d7ZLTMCUhpRSlGgVS+VoFkdAfvI1og3cYnV9lChoBmgJaA9DCEyN0M/UIV5AlIaUUpRoFU3oA2gWR0B+/MkWykbhdX2UKGgGaAloD0MIg6YlVsYCYECUhpRSlGgVTegDaBZHQH7+FlkH2RJ1fZQoaAZoCWgPQwgriIGuffdAQJSGlFKUaBVLvGgWR0B/DGvECNjtdX2UKGgGaAloD0MIoP8evHZoXECUhpRSlGgVTegDaBZHQH8QpR0lqrR1fZQoaAZoCWgPQwgWhV0UPcJiQJSGlFKUaBVN6ANoFkdAfxGvWYnfEXV9lChoBmgJaA9DCDEG1nH8b2RAlIaUUpRoFU3oA2gWR0B/FHP1L8JldX2UKGgGaAloD0MIBabTug0HZkCUhpRSlGgVTegDaBZHQH9xNm16Vt51fZQoaAZoCWgPQwhUVtP1xINhQJSGlFKUaBVN6ANoFkdAf3OtNi6QNnV9lChoBmgJaA9DCEdZv5mYNmLAlIaUUpRoFU0NAmgWR0B/eQ14xDb8dX2UKGgGaAloD0MInrKarifNUkCUhpRSlGgVTegDaBZHQH95Y3vQWvd1fZQoaAZoCWgPQwiw5gDBHF0WQJSGlFKUaBVL4GgWR0B/jP0UXYUWdX2UKGgGaAloD0MIs5lDUgt5M8CUhpRSlGgVTRQBaBZHQH+OOHerMkh1fZQoaAZoCWgPQwiRmKCGb95kQJSGlFKUaBVN6ANoFkdAf5bssg+yJXV9lChoBmgJaA9DCMx+3enOl2BAlIaUUpRoFU3oA2gWR0B/l+qlxffGdX2UKGgGaAloD0MIBYasbvX+WUCUhpRSlGgVTegDaBZHQH+dyeiBXjl1fZQoaAZoCWgPQwgHfentTxJiQJSGlFKUaBVN6ANoFkdAf6XJ6IFeOXV9lChoBmgJaA9DCAbaHVIMsV9AlIaUUpRoFU3oA2gWR0B/pl1dPci4dX2UKGgGaAloD0MIOGdEaW/OUUCUhpRSlGgVTegDaBZHQH+riFfzBhx1fZQoaAZoCWgPQwjDLR9JSR8/wJSGlFKUaBVL7mgWR0B/trd0q6OHdX2UKGgGaAloD0MII7vSMlLPJsCUhpRSlGgVS+JoFkdAf8pdVea8YnV9lChoBmgJaA9DCKjIIeLmVWBAlIaUUpRoFU3oA2gWR0B/2sAn2IwedX2UKGgGaAloD0MI/g5FgT4qYUCUhpRSlGgVTegDaBZHQH/cKJl8PWh1fZQoaAZoCWgPQwh8DFac6o5jQJSGlFKUaBVN6ANoFkdAf+tPhAGB4HV9lChoBmgJaA9DCHoYWp0c2GJAlIaUUpRoFU3oA2gWR0B/8CD5CWu6dX2UKGgGaAloD0MIU9DtJQ0dZECUhpRSlGgVTegDaBZHQH/xS/wiJO51fZQoaAZoCWgPQwjnjZPCvN1cQJSGlFKUaBVN6ANoFkdAgCs2oNutOnV9lChoBmgJaA9DCMo2cAfqAmNAlIaUUpRoFU3oA2gWR0CALpLKV6eHdX2UKGgGaAloD0MIBd7Jp8f6YUCUhpRSlGgVTegDaBZHQIAuxf0Eov11fZQoaAZoCWgPQwjovpzZrgBBwJSGlFKUaBVL3WgWR0CANOr1/Ue/dX2UKGgGaAloD0MIVDasqSynYECUhpRSlGgVTegDaBZHQIA6QmiQDFJ1fZQoaAZoCWgPQwhAFMyYgq1hQJSGlFKUaBVN6ANoFkdAgDrgGSpzcXV9lChoBmgJaA9DCAOxbOaQAV1AlIaUUpRoFU3oA2gWR0CAPxVaOgg6dX2UKGgGaAloD0MIvR5Mio+CXkCUhpRSlGgVTegDaBZHQIBCc45tFa11fZQoaAZoCWgPQwhhFto5Tc1gQJSGlFKUaBVN6ANoFkdAgEZfFBIFvHV9lChoBmgJaA9DCLiU88XeSWNAlIaUUpRoFU3oA2gWR0CARqS13MY/dX2UKGgGaAloD0MIkuaPaW3iLcCUhpRSlGgVS8VoFkdAgEdtaY/mknV9lChoBmgJaA9DCNRgGoaPODJAlIaUUpRoFUvaaBZHQIBNcI5YHPh1fZQoaAZoCWgPQwiJ0XML3T5jQJSGlFKUaBVN6ANoFkdAgE9FjEvTPXV9lChoBmgJaA9DCHXlszyPK2BAlIaUUpRoFU3oA2gWR0CAWMUfPompdX2UKGgGaAloD0MIXcDLDBs1XkCUhpRSlGgVTegDaBZHQIBgh66asp51fZQoaAZoCWgPQwhKB+v/HG9hQJSGlFKUaBVN6ANoFkdAgGE1wo9cKXV9lChoBmgJaA9DCO61oPdGgmNAlIaUUpRoFU3oA2gWR0CAaQLncL0BdX2UKGgGaAloD0MIsb/snjysXkCUhpRSlGgVTegDaBZHQIBrVNN8E3d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xNYXR0aGlhc1xBcHBEYXRhXFJvYW1pbmdcUHl0aG9uXFB5dGhvbjM5XHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.8.0", "Stable-Baselines3": "1.5.0", "PyTorch": "1.10.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.0", "Gym": "0.21.0"}}
dsf.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6187cdfeefa414efe2942dc447c7e4e94d523fef9380b7791813a220f0581bcf
3
+ size 142998
dsf/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
dsf/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x00000201A7A54B80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000201A7A54C10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000201A7A54CA0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000201A7A54D30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x00000201A7A54DC0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x00000201A7A54E50>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000201A7A54EE0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x00000201A7A54F70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000201A7A58040>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000201A7A580D0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000201A7A58160>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x00000201A7A4CDE0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652307351.2285883,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGtjOlxVc2Vyc1xSYXBoYWVsXEFwcERhdGFcTG9jYWxcUHJvZ3JhbXNcUHl0aG9uXFB5dGhvbjM4XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.015808000000000044,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3szoR8PcW0CUhpRSlIwBbJRN6AOMAXSUR0B8P3F6zE75dX2UKGgGaAloD0MI1bFK6RnlYkCUhpRSlGgVTegDaBZHQHxOLeVLSNR1fZQoaAZoCWgPQwiASL99HYRfQJSGlFKUaBVN6ANoFkdAfFQZK3/gi3V9lChoBmgJaA9DCCv3ArNCR0hAlIaUUpRoFU3oA2gWR0B8WegElme2dX2UKGgGaAloD0MI3nL1Y5P6TkCUhpRSlGgVTegDaBZHQHxgQiFCb+d1fZQoaAZoCWgPQwjYLQJj/d1iQJSGlFKUaBVN6ANoFkdAfGJvL5h0AHV9lChoBmgJaA9DCFRW0/VEpl9AlIaUUpRoFU3oA2gWR0B8zjqLS/j9dX2UKGgGaAloD0MIwHtHjQlhO0CUhpRSlGgVS7hoFkdAfNFI4EOiFnV9lChoBmgJaA9DCA1QGmqUGWFAlIaUUpRoFU3oA2gWR0B81p3Ux20RdX2UKGgGaAloD0MIQs2QKootZECUhpRSlGgVTegDaBZHQHzXACGN70F1fZQoaAZoCWgPQwgcCp+tg8dTQJSGlFKUaBVN6ANoFkdAfN+LZi/fwnV9lChoBmgJaA9DCKDgYkUN4lRAlIaUUpRoFU3oA2gWR0B86hcRlHz6dX2UKGgGaAloD0MIKZgxBWuBWkCUhpRSlGgVTegDaBZHQHztuNxVAA11fZQoaAZoCWgPQwhJLCl3n4daQJSGlFKUaBVN6ANoFkdAfPtGPPszEnV9lChoBmgJaA9DCH09X7NcwVFAlIaUUpRoFU3oA2gWR0B9AXt6X0GvdX2UKGgGaAloD0MI+mGE8Gj9UUCUhpRSlGgVTegDaBZHQH0IuvdM0xd1fZQoaAZoCWgPQwgIsMivH1YzwJSGlFKUaBVL4GgWR0B9CT4Ju2qldX2UKGgGaAloD0MIOnZQieueQ8CUhpRSlGgVTScBaBZHQH0ON+TeO4p1fZQoaAZoCWgPQwi1/pYA/K9VQJSGlFKUaBVN6ANoFkdAfRFe0ojOcHV9lChoBmgJaA9DCGJM+nuprGNAlIaUUpRoFU3oA2gWR0B9GLLIPsiTdX2UKGgGaAloD0MIfLYODvYwYECUhpRSlGgVTegDaBZHQH0lZwsGxD91fZQoaAZoCWgPQwjwGB77WYFrQJSGlFKUaBVNogNoFkdAfSb0WuX/pHV9lChoBmgJaA9DCFbVy++03GBAlIaUUpRoFU3oA2gWR0B9KpYlpoK2dX2UKGgGaAloD0MI/gqZK4MFXECUhpRSlGgVTegDaBZHQH04T3Zf2K51fZQoaAZoCWgPQwikG2FREdBkQJSGlFKUaBVN6ANoFkdAfavQY1pCbHV9lChoBmgJaA9DCD9wlScQ9vS/lIaUUpRoFU0hAWgWR0B9q9ytFKChdX2UKGgGaAloD0MI/tKiPsnHXUCUhpRSlGgVTegDaBZHQH2vRR64Uex1fZQoaAZoCWgPQwhgkV8/xNRdQJSGlFKUaBVN6ANoFkdAfbS99tuUEHV9lChoBmgJaA9DCJmAXyPJuGFAlIaUUpRoFU3oA2gWR0B9tSRbKRuCdX2UKGgGaAloD0MIehowSPpXX0CUhpRSlGgVTegDaBZHQH298uWa+ex1fZQoaAZoCWgPQwjE7dCwmMxgQJSGlFKUaBVN6ANoFkdAfdyOjIq9XnV9lChoBmgJaA9DCJfIBWdw0GBAlIaUUpRoFU3oA2gWR0B949Y5ksjFdX2UKGgGaAloD0MIzNHj9zbKXECUhpRSlGgVTegDaBZHQH3sLD2rXDp1fZQoaAZoCWgPQwiHMenvJbBhQJSGlFKUaBVN6ANoFkdAfey/smfGuXV9lChoBmgJaA9DCGx7uyW5nmJAlIaUUpRoFU3oA2gWR0B98iQMhHLBdX2UKGgGaAloD0MIigCnd/G+XkCUhpRSlGgVTegDaBZHQH31eAZsKsx1fZQoaAZoCWgPQwiOImsNpZRZQJSGlFKUaBVN6ANoFkdAff0N+b3GoHV9lChoBmgJaA9DCCP0M/W6415AlIaUUpRoFU3oA2gWR0B+C4Cih37ldX2UKGgGaAloD0MINxYUBuUXY0CUhpRSlGgVTegDaBZHQH4PXMpw0fp1fZQoaAZoCWgPQwh2+6wy07NpQJSGlFKUaBVNTgNoFkdAfhwu7HyVfXV9lChoBmgJaA9DCGyVYHG4EmNAlIaUUpRoFU3oA2gWR0B+HXqzJIUbdX2UKGgGaAloD0MIBoNr7ug/IECUhpRSlGgVTQ0BaBZHQH4w61gH/tJ1fZQoaAZoCWgPQwhXsmMjEN9fQJSGlFKUaBVN6ANoFkdAfjISQHRkVnV9lChoBmgJaA9DCEcf8wGBrF5AlIaUUpRoFU3oA2gWR0B+kKDmKZUldX2UKGgGaAloD0MINpTai+iAY0CUhpRSlGgVTegDaBZHQH6WASnLq2V1fZQoaAZoCWgPQwh1sWmlkFlgQJSGlFKUaBVN6ANoFkdAfpZoVmBe5XV9lChoBmgJaA9DCK34hsJnsUtAlIaUUpRoFU1PAWgWR0B+mNbt7a7FdX2UKGgGaAloD0MI2QdZFkw7YECUhpRSlGgVTegDaBZHQH6eiRr8BMl1fZQoaAZoCWgPQwidhT3t8KtWQJSGlFKUaBVN6ANoFkdAfrzn752yLXV9lChoBmgJaA9DCOAPP/89aCLAlIaUUpRoFU0yAWgWR0B+vfpeNT99dX2UKGgGaAloD0MIGNLhIYwRRECUhpRSlGgVTegDaBZHQH7EXKr7wa11fZQoaAZoCWgPQwggCmZMwY1hQJSGlFKUaBVN6ANoFkdAfsyN0NjLCHV9lChoBmgJaA9DCA/Tvrm/tmJAlIaUUpRoFU3oA2gWR0B+zSl3yI56dX2UKGgGaAloD0MIl631RULJX0CUhpRSlGgVTegDaBZHQH7SM7U5MlF1fZQoaAZoCWgPQwireCPzyMFjQJSGlFKUaBVN6ANoFkdAftVm6GxlhHV9lChoBmgJaA9DCKopyTocwV1AlIaUUpRoFU3oA2gWR0B+3N+9alk6dX2UKGgGaAloD0MIo7H2d7ZLTMCUhpRSlGgVS+VoFkdAfvI1og3cYnV9lChoBmgJaA9DCEyN0M/UIV5AlIaUUpRoFU3oA2gWR0B+/MkWykbhdX2UKGgGaAloD0MIg6YlVsYCYECUhpRSlGgVTegDaBZHQH7+FlkH2RJ1fZQoaAZoCWgPQwgriIGuffdAQJSGlFKUaBVLvGgWR0B/DGvECNjtdX2UKGgGaAloD0MIoP8evHZoXECUhpRSlGgVTegDaBZHQH8QpR0lqrR1fZQoaAZoCWgPQwgWhV0UPcJiQJSGlFKUaBVN6ANoFkdAfxGvWYnfEXV9lChoBmgJaA9DCDEG1nH8b2RAlIaUUpRoFU3oA2gWR0B/FHP1L8JldX2UKGgGaAloD0MIBabTug0HZkCUhpRSlGgVTegDaBZHQH9xNm16Vt51fZQoaAZoCWgPQwhUVtP1xINhQJSGlFKUaBVN6ANoFkdAf3OtNi6QNnV9lChoBmgJaA9DCEdZv5mYNmLAlIaUUpRoFU0NAmgWR0B/eQ14xDb8dX2UKGgGaAloD0MInrKarifNUkCUhpRSlGgVTegDaBZHQH95Y3vQWvd1fZQoaAZoCWgPQwiw5gDBHF0WQJSGlFKUaBVL4GgWR0B/jP0UXYUWdX2UKGgGaAloD0MIs5lDUgt5M8CUhpRSlGgVTRQBaBZHQH+OOHerMkh1fZQoaAZoCWgPQwiRmKCGb95kQJSGlFKUaBVN6ANoFkdAf5bssg+yJXV9lChoBmgJaA9DCMx+3enOl2BAlIaUUpRoFU3oA2gWR0B/l+qlxffGdX2UKGgGaAloD0MIBYasbvX+WUCUhpRSlGgVTegDaBZHQH+dyeiBXjl1fZQoaAZoCWgPQwgHfentTxJiQJSGlFKUaBVN6ANoFkdAf6XJ6IFeOXV9lChoBmgJaA9DCAbaHVIMsV9AlIaUUpRoFU3oA2gWR0B/pl1dPci4dX2UKGgGaAloD0MIOGdEaW/OUUCUhpRSlGgVTegDaBZHQH+riFfzBhx1fZQoaAZoCWgPQwjDLR9JSR8/wJSGlFKUaBVL7mgWR0B/trd0q6OHdX2UKGgGaAloD0MII7vSMlLPJsCUhpRSlGgVS+JoFkdAf8pdVea8YnV9lChoBmgJaA9DCKjIIeLmVWBAlIaUUpRoFU3oA2gWR0B/2sAn2IwedX2UKGgGaAloD0MI/g5FgT4qYUCUhpRSlGgVTegDaBZHQH/cKJl8PWh1fZQoaAZoCWgPQwh8DFac6o5jQJSGlFKUaBVN6ANoFkdAf+tPhAGB4HV9lChoBmgJaA9DCHoYWp0c2GJAlIaUUpRoFU3oA2gWR0B/8CD5CWu6dX2UKGgGaAloD0MIU9DtJQ0dZECUhpRSlGgVTegDaBZHQH/xS/wiJO51fZQoaAZoCWgPQwjnjZPCvN1cQJSGlFKUaBVN6ANoFkdAgCs2oNutOnV9lChoBmgJaA9DCMo2cAfqAmNAlIaUUpRoFU3oA2gWR0CALpLKV6eHdX2UKGgGaAloD0MIBd7Jp8f6YUCUhpRSlGgVTegDaBZHQIAuxf0Eov11fZQoaAZoCWgPQwjovpzZrgBBwJSGlFKUaBVL3WgWR0CANOr1/Ue/dX2UKGgGaAloD0MIVDasqSynYECUhpRSlGgVTegDaBZHQIA6QmiQDFJ1fZQoaAZoCWgPQwhAFMyYgq1hQJSGlFKUaBVN6ANoFkdAgDrgGSpzcXV9lChoBmgJaA9DCAOxbOaQAV1AlIaUUpRoFU3oA2gWR0CAPxVaOgg6dX2UKGgGaAloD0MIvR5Mio+CXkCUhpRSlGgVTegDaBZHQIBCc45tFa11fZQoaAZoCWgPQwhhFto5Tc1gQJSGlFKUaBVN6ANoFkdAgEZfFBIFvHV9lChoBmgJaA9DCLiU88XeSWNAlIaUUpRoFU3oA2gWR0CARqS13MY/dX2UKGgGaAloD0MIkuaPaW3iLcCUhpRSlGgVS8VoFkdAgEdtaY/mknV9lChoBmgJaA9DCNRgGoaPODJAlIaUUpRoFUvaaBZHQIBNcI5YHPh1fZQoaAZoCWgPQwiJ0XML3T5jQJSGlFKUaBVN6ANoFkdAgE9FjEvTPXV9lChoBmgJaA9DCHXlszyPK2BAlIaUUpRoFU3oA2gWR0CAWMUfPompdX2UKGgGaAloD0MIXcDLDBs1XkCUhpRSlGgVTegDaBZHQIBgh66asp51fZQoaAZoCWgPQwhKB+v/HG9hQJSGlFKUaBVN6ANoFkdAgGE1wo9cKXV9lChoBmgJaA9DCO61oPdGgmNAlIaUUpRoFU3oA2gWR0CAaQLncL0BdX2UKGgGaAloD0MIsb/snjysXkCUhpRSlGgVTegDaBZHQIBrVNN8E3d1ZS4="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 124,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xNYXR0aGlhc1xBcHBEYXRhXFJvYW1pbmdcUHl0aG9uXFB5dGhvbjM5XHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
dsf/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09f3da75b933a76a3f13ba7d15b2d0a8e0a28c2c3cd5c673105d87cb0b95cfb
3
+ size 84829
dsf/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f11c0e26d14fe42e548534994c5753e79f26ecdd3228fe59f23a9d5814deef69
3
+ size 43201
dsf/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dsf/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Windows-10-10.0.19041-SP0 10.0.19041
2
+ Python: 3.8.0
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.10.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.22.0
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 208.15086242527792, "std_reward": 42.120297866926784, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T00:37:31.565990"}