Commit
·
0774a75
1
Parent(s):
eef1745
First commit with DOME model
Browse filesSigned-off-by: egor <egorbu@gmail.com>
- README.md +224 -0
- config.json +27 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DOME wrapper for docstring intent classification
|
| 2 |
+
This wrapper allows to
|
| 3 |
+
* split docstrings into sentences
|
| 4 |
+
* convert to required DOME inputs
|
| 5 |
+
* predict class for each sentence in docstring
|
| 6 |
+
|
| 7 |
+
## Model architecture
|
| 8 |
+
Architecture is based on https://github.com/ICSE-DOME/DOME.
|
| 9 |
+
|
| 10 |
+
## Usage
|
| 11 |
+
```python
|
| 12 |
+
docstring = "sentences of docstring"
|
| 13 |
+
dome = DOME("dome_location")
|
| 14 |
+
sentences, predictions = dome.predict(docstring)
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
## Dependencies
|
| 18 |
+
```
|
| 19 |
+
spacy
|
| 20 |
+
torch
|
| 21 |
+
transformers
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
## Code of the model
|
| 25 |
+
````python
|
| 26 |
+
"""
|
| 27 |
+
Model is based on replication package for ICSE23 Paper Developer-Intent Driven Code Comment Generation.
|
| 28 |
+
Initial solution: https://github.com/ICSE-DOME/DOME
|
| 29 |
+
Pipeline consists of several parts:
|
| 30 |
+
* split docstring into sentences
|
| 31 |
+
* prepare input data for DOMEBertForClassification
|
| 32 |
+
* predict class
|
| 33 |
+
|
| 34 |
+
How to use:
|
| 35 |
+
```python
|
| 36 |
+
docstring = "sentences of docstring"
|
| 37 |
+
dome = DOME("dome_location")
|
| 38 |
+
sentences, predictions = dome.predict(docstring)
|
| 39 |
+
```
|
| 40 |
+
"""
|
| 41 |
+
import re
|
| 42 |
+
from typing import Tuple, List
|
| 43 |
+
|
| 44 |
+
import spacy
|
| 45 |
+
import torch
|
| 46 |
+
import torch.nn as nn
|
| 47 |
+
import torch.nn.functional as F
|
| 48 |
+
from transformers import AutoTokenizer, RobertaConfig, RobertaModel
|
| 49 |
+
|
| 50 |
+
MAX_LENGTH_BERT = 510
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class DOME:
|
| 54 |
+
"""
|
| 55 |
+
End-to-end pipeline for docstring classification
|
| 56 |
+
* split sentences
|
| 57 |
+
* prepare inputs
|
| 58 |
+
* classify
|
| 59 |
+
"""
|
| 60 |
+
def __init__(self, pretrained_model: str):
|
| 61 |
+
"""
|
| 62 |
+
:param pretrained_model: location of pretrained model
|
| 63 |
+
"""
|
| 64 |
+
self.model = DOMEBertForClassification.from_pretrained(pretrained_model)
|
| 65 |
+
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
|
| 66 |
+
self.docstring2sentences = Docstring2Sentences()
|
| 67 |
+
|
| 68 |
+
def predict(self, docstring: str) -> Tuple[List[str], List[str]]:
|
| 69 |
+
"""
|
| 70 |
+
Predict DOME classes for each sentence in docstring.
|
| 71 |
+
:param docstring: docstring to process
|
| 72 |
+
:return: tuple with list of sentences and list of predictions for each sentence.
|
| 73 |
+
"""
|
| 74 |
+
sentences = self.docstring2sentences.docstring2sentences(docstring)
|
| 75 |
+
predictions = [self.model.predict(*dome_preprocess(tokenizer=self.tokenizer, comment=sentence))
|
| 76 |
+
for sentence in sentences]
|
| 77 |
+
return sentences, predictions
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class DOMEBertForClassification(RobertaModel):
|
| 81 |
+
"""
|
| 82 |
+
A custom classification model based on the RobertaModel for intent classification.
|
| 83 |
+
|
| 84 |
+
This model extends the RobertaModel with additional linear layers to incorporate
|
| 85 |
+
comment length as an additional feature for classification tasks.
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
DOME_CLASS_NAMES = ["what", "why", "how-to-use", "how-it-is-done", "property", "others"]
|
| 89 |
+
|
| 90 |
+
def __init__(self, config: RobertaConfig):
|
| 91 |
+
"""
|
| 92 |
+
Initialize the DOMEBertForClassification model.
|
| 93 |
+
|
| 94 |
+
:param config: The configuration information for the RobertaModel.
|
| 95 |
+
"""
|
| 96 |
+
super().__init__(config)
|
| 97 |
+
|
| 98 |
+
# I omit possibility to configure number of classes and so on because we need to load pretrained model
|
| 99 |
+
# DOME layers for intent classification:
|
| 100 |
+
self.fc1 = nn.Linear(768 + 1, 768 // 3)
|
| 101 |
+
self.fc2 = nn.Linear(768 // 3, 6)
|
| 102 |
+
self.dropout = nn.Dropout(0.2)
|
| 103 |
+
|
| 104 |
+
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor = None, comment_len: torch.Tensor = None) \
|
| 105 |
+
-> torch.Tensor:
|
| 106 |
+
"""
|
| 107 |
+
Forward pass for the DOMEBertForClassification model.
|
| 108 |
+
|
| 109 |
+
:param input_ids: Tensor of token ids to be fed to a model.
|
| 110 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices. Always equals 1.
|
| 111 |
+
:param comment_len: Tensor representing the length of comments. Equal 1 if comment has less than 3 words,
|
| 112 |
+
0 otherwise.
|
| 113 |
+
:return: The logits after passing through the model.
|
| 114 |
+
"""
|
| 115 |
+
# Use the parent class's forward method to get the base outputs
|
| 116 |
+
outputs = super().forward(
|
| 117 |
+
input_ids=input_ids,
|
| 118 |
+
attention_mask=attention_mask
|
| 119 |
+
)
|
| 120 |
+
# Extract the pooled output (last hidden state of the [CLS] token)
|
| 121 |
+
pooled_output = outputs.pooler_output
|
| 122 |
+
# DOME custom layers:
|
| 123 |
+
comment_len = comment_len.view(-1, 1).float() # Ensure comment_len is correctly shaped
|
| 124 |
+
# DOME use comment len as additional feature
|
| 125 |
+
combined_input = torch.cat([pooled_output, comment_len], dim=-1)
|
| 126 |
+
x = self.dropout(F.relu(self.fc1(self.dropout(combined_input))))
|
| 127 |
+
logits = self.fc2(x)
|
| 128 |
+
return logits
|
| 129 |
+
|
| 130 |
+
def predict(self, input_ids: torch.Tensor, attention_mask: torch.Tensor = None, comment_len: torch.Tensor = None) \
|
| 131 |
+
-> str:
|
| 132 |
+
"""
|
| 133 |
+
Predict class for tokenized docstring.
|
| 134 |
+
|
| 135 |
+
:param input_ids: Tensor of token ids to be fed to a model.
|
| 136 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices. Always equals 1.
|
| 137 |
+
:param comment_len: Tensor representing the length of comments. Equal 1 if comment has less than 3 words,
|
| 138 |
+
0 otherwise.
|
| 139 |
+
:return: class
|
| 140 |
+
"""
|
| 141 |
+
logits = self.forward(input_ids=input_ids, attention_mask=attention_mask, comment_len=comment_len)
|
| 142 |
+
return self.DOME_CLASS_NAMES[int(torch.argmax(logits, 1))]
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def dome_preprocess(tokenizer, comment):
|
| 146 |
+
"""
|
| 147 |
+
DOME preprocessor - returns all required values for "DOMEBertForClassification.forward".
|
| 148 |
+
This function limits maximum number of tokens to fit into BERT.
|
| 149 |
+
:param tokenizer: tokenizer to use.
|
| 150 |
+
:param comment: text of sentence from docstring/comment that should be classified by DOMEBertForClassification.
|
| 151 |
+
:return: tuple with (input_ids, attention_mask, comment_len).
|
| 152 |
+
"""
|
| 153 |
+
input_ids = tokenizer.convert_tokens_to_ids([tokenizer.cls_token] + tokenizer.tokenize(comment) +
|
| 154 |
+
[tokenizer.sep_token])[:MAX_LENGTH_BERT]
|
| 155 |
+
attention_mask = [1] * len(input_ids)
|
| 156 |
+
if len(comment.strip().split()) < 3:
|
| 157 |
+
comment_len = 1
|
| 158 |
+
else:
|
| 159 |
+
comment_len = 0
|
| 160 |
+
return (torch.tensor(input_ids).unsqueeze(0), torch.tensor(attention_mask).unsqueeze(0),
|
| 161 |
+
torch.tensor(comment_len).unsqueeze(0))
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
class Docstring2Sentences:
|
| 165 |
+
"""Helper class to split docstrings into sentences"""
|
| 166 |
+
def __init__(self):
|
| 167 |
+
self.spacy_nlp = spacy.load("en_core_web_sm")
|
| 168 |
+
|
| 169 |
+
@staticmethod
|
| 170 |
+
def split_docstring(docstring: str, delimiters: List[Tuple[str, str]]):
|
| 171 |
+
"""
|
| 172 |
+
Splits the docstring into separate parts of text and code blocks, preserving the original formatting.
|
| 173 |
+
|
| 174 |
+
:param docstring: The docstring to split.
|
| 175 |
+
:param delimiters: A list of tuples, each containing start and end delimiters for code blocks.
|
| 176 |
+
:return: A list of strings, each either a text block or a code block.
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
# Escape delimiter parts for regex and create a combined pattern
|
| 180 |
+
escaped_delimiters = [tuple(map(re.escape, d)) for d in delimiters]
|
| 181 |
+
combined_pattern = '|'.join([f'({start}.*?{end})' for start, end in escaped_delimiters])
|
| 182 |
+
|
| 183 |
+
# Split using the combined pattern, preserving the delimiters
|
| 184 |
+
parts = re.split(combined_pattern, docstring, flags=re.DOTALL)
|
| 185 |
+
|
| 186 |
+
# Filter out empty strings
|
| 187 |
+
parts = [part for part in parts if part]
|
| 188 |
+
|
| 189 |
+
return parts
|
| 190 |
+
|
| 191 |
+
@staticmethod
|
| 192 |
+
def is_only_spaces_and_newlines(string):
|
| 193 |
+
"""
|
| 194 |
+
Check if the given string contains only spaces and newlines.
|
| 195 |
+
|
| 196 |
+
:param string: The string to check.
|
| 197 |
+
:return: True if the string contains only spaces and newlines, False otherwise.
|
| 198 |
+
"""
|
| 199 |
+
return bool(re.match(r'^[\s\n]+$', string))
|
| 200 |
+
|
| 201 |
+
def docstring2sentences(self, docstring):
|
| 202 |
+
"""
|
| 203 |
+
Splits a docstring into individual sentences, preserving code blocks.
|
| 204 |
+
|
| 205 |
+
This function uses `docstring2parts` to split the docstring into parts based on predefined code block delimiters.
|
| 206 |
+
It then utilizes a SpaCy NLP model to split the non-code text parts into sentences.
|
| 207 |
+
Code blocks are kept intact as single elements.
|
| 208 |
+
|
| 209 |
+
:param docstring: The docstring to be processed, which may contain both regular text and code blocks.
|
| 210 |
+
:return: A list containing individual sentences and intact code blocks.
|
| 211 |
+
"""
|
| 212 |
+
delimiters = [("@code", "@endcode"), ("\code", "\endcode")]
|
| 213 |
+
parts = self.split_docstring(docstring=docstring, delimiters=delimiters)
|
| 214 |
+
sentences = []
|
| 215 |
+
for part in parts:
|
| 216 |
+
if part[1:5] == "code" and part[-7:] == "endcode":
|
| 217 |
+
# code block
|
| 218 |
+
sentences.append(part)
|
| 219 |
+
else:
|
| 220 |
+
sentences.extend(sentence.text for sentence in self.spacy_nlp(part).sents)
|
| 221 |
+
|
| 222 |
+
return [sentence for sentence in sentences if not self.is_only_spaces_and_newlines(sentence)]
|
| 223 |
+
|
| 224 |
+
````
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"DOMEBertForClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"eos_token_id": 2,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "roberta",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"output_past": true,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.9.2",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 50265
|
| 27 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f045aba0a263d2bc109af9476b5673fb666b2e716de91698a6b639505668cb19
|
| 3 |
+
size 499457001
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": "/home/egor/workdir/github/ICSE-DOME/DOME/src/comment_classifier/pretrained_codebert/special_tokens_map.json", "name_or_path": "/home/egor/workdir/github/ICSE-DOME/DOME/src/comment_classifier/pretrained_codebert", "tokenizer_class": "RobertaTokenizer"}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|