|
from haystack.document_stores import FAISSDocumentStore |
|
document_store = FAISSDocumentStore(faiss_index_factory_str="Flat", embedding_dim=1024) |
|
|
|
|
|
from haystack.utils import clean_wiki_text, convert_files_to_docs |
|
doc_dir = "test" |
|
docs = convert_files_to_docs(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True) |
|
document_store.write_documents(docs) |
|
|
|
from haystack.nodes import EmbeddingRetriever |
|
|
|
retriever = EmbeddingRetriever( |
|
document_store=document_store, |
|
embedding_model="AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru" |
|
) |
|
document_store.update_embeddings(retriever) |
|
|
|
from haystack.nodes import FARMReader |
|
|
|
reader = FARMReader(model_name_or_path="AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru", use_gpu=False) |
|
|
|
from haystack.pipelines import ExtractiveQAPipeline |
|
pipe = ExtractiveQAPipeline(reader, retriever) |
|
|
|
|
|
query = "директор Института электроэнергетики и электроники?" |
|
prediction = pipe.run( |
|
query=query, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 10}} |
|
) |
|
print(prediction) |
|
|