Rakib nazneen commited on
Commit
489c045
1 Parent(s): bc60334

model documentation (#2)

Browse files

- model documentation (31e1ed57ea6cdd7128a93750f3c2f125ac65b6d1)


Co-authored-by: Nazneen Rajani <nazneen@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +172 -0
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card for roberta-base-on-cuad
2
+
3
+ # Model Details
4
+
5
+ ## Model Description
6
+
7
+ - **Developed by:** Mohammed Rakib
8
+ - **Shared by [Optional]:** More information needed
9
+ - **Model type:** Question Answering
10
+ - **Language(s) (NLP):** en
11
+ - **License:** More information needed
12
+ - **Related Models:**
13
+ - **Parent Model:** RoBERTa
14
+ - **Resources for more information:**
15
+ - [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/roberta)
16
+ - [Associated Paper](https://arxiv.org/abs/1907.11692)
17
+
18
+
19
+
20
+
21
+ # Uses
22
+
23
+
24
+ ## Direct Use
25
+
26
+ This model can be used for the task of Question Answering.
27
+
28
+ ## Downstream Use [Optional]
29
+
30
+ More information needed
31
+
32
+ ## Out-of-Scope Use
33
+
34
+ The model should not be used to intentionally create hostile or alienating environments for people.
35
+
36
+ # Bias, Risks, and Limitations
37
+
38
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
39
+
40
+
41
+ ## Recommendations
42
+
43
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
44
+
45
+
46
+ # Training Details
47
+
48
+ ## Training Data
49
+
50
+ See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information.
51
+
52
+ ## Training Procedure
53
+
54
+
55
+ ### Preprocessing
56
+
57
+ More information needed
58
+
59
+ ### Speeds, Sizes, Times
60
+
61
+ More information needed
62
+
63
+ # Evaluation
64
+
65
+
66
+ ## Testing Data, Factors & Metrics
67
+
68
+ ### Testing Data
69
+
70
+ See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information.
71
+
72
+ ### Factors
73
+
74
+
75
+ ### Metrics
76
+
77
+ More information needed
78
+ ## Results
79
+
80
+ More information needed
81
+
82
+ # Model Examination
83
+
84
+ More information needed
85
+
86
+ # Environmental Impact
87
+
88
+
89
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
90
+
91
+ - **Hardware Type:** More information needed
92
+ - **Hours used:** More information needed
93
+ - **Cloud Provider:** More information needed
94
+ - **Compute Region:** More information needed
95
+ - **Carbon Emitted:** More information needed
96
+
97
+ # Technical Specifications [optional]
98
+
99
+ ## Model Architecture and Objective
100
+
101
+ More information needed
102
+
103
+ ## Compute Infrastructure
104
+
105
+ More information needed
106
+
107
+ ### Hardware
108
+
109
+ More information needed
110
+
111
+ ### Software
112
+ More information needed
113
+
114
+ # Citation
115
+
116
+
117
+ **BibTeX:**
118
+ ```
119
+ @article{DBLP:journals/corr/abs-1907-11692,
120
+ author = {Yinhan Liu and
121
+ Myle Ott and
122
+ Naman Goyal and
123
+ Jingfei Du and
124
+ Mandar Joshi and
125
+ Danqi Chen and
126
+ Omer Levy and
127
+ Mike Lewis and
128
+ Luke Zettlemoyer and
129
+ Veselin Stoyanov},
130
+ title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
131
+ journal = {CoRR},
132
+ volume = {abs/1907.11692},
133
+ year = {2019},
134
+ url = {http://arxiv.org/abs/1907.11692},
135
+ archivePrefix = {arXiv},
136
+ eprint = {1907.11692},
137
+ timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
138
+ biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
139
+ bibsource = {dblp computer science bibliography, https://dblp.org}
140
+ }
141
+ ```
142
+
143
+
144
+ # Glossary [optional]
145
+ More information needed
146
+
147
+ # More Information [optional]
148
+
149
+ More information needed
150
+
151
+ # Model Card Authors [optional]
152
+
153
+ Mohammed Rakib in collaboration with Ezi Ozoani and the Hugging Face team
154
+
155
+ # Model Card Contact
156
+
157
+ More information needed
158
+
159
+ # How to Get Started with the Model
160
+
161
+ Use the code below to get started with the model.
162
+
163
+ <details>
164
+ <summary> Click to expand </summary>
165
+ ```python
166
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
167
+
168
+ tokenizer = AutoTokenizer.from_pretrained("Rakib/roberta-base-on-cuad")
169
+
170
+ model = AutoModelForQuestionAnswering.from_pretrained("Rakib/roberta-base-on-cuad")
171
+ ```
172
+ </details>