Rakesh12345
commited on
Commit
•
55018bb
1
Parent(s):
51b5e18
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Final_project_of_Credit_Card_Fraud_Detection(1).ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1PSHcV_bp0wcT0Kl_f2n5QwtlOZj3M5BV
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import seaborn as sns
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
data=pd.read_csv('/content/data4.csv')
|
15 |
+
|
16 |
+
data.head()
|
17 |
+
|
18 |
+
data.shape
|
19 |
+
|
20 |
+
data.isnull().sum().sum()
|
21 |
+
|
22 |
+
data.keys()
|
23 |
+
|
24 |
+
data.info()
|
25 |
+
|
26 |
+
data=data.drop(['Unnamed: 0','nameOrig','nameDest'],axis=1)
|
27 |
+
|
28 |
+
data.shape
|
29 |
+
|
30 |
+
data['isFraud'].value_counts()
|
31 |
+
|
32 |
+
plt.pie(data['isFraud'].value_counts(),labels=['Not_Fraud','Fraud'],autopct='%0.2f%%')
|
33 |
+
plt.show()
|
34 |
+
|
35 |
+
#sns.countplot('isFraud',data=data)
|
36 |
+
sns.countplot(data=data, x="type", hue="isFraud")
|
37 |
+
plt.show()
|
38 |
+
|
39 |
+
plt.figure(figsize=(6,8))
|
40 |
+
sns.countplot(data=data, x="isFraud", hue="type")
|
41 |
+
plt.show()
|
42 |
+
|
43 |
+
data.tail()
|
44 |
+
|
45 |
+
data['type'].value_counts()
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
dict1={'CASH_OUT':0,'TRANSFER':1,'PAYMENT':2,'CASH_IN':3,'DEBIT':4}
|
50 |
+
|
51 |
+
data['type']=data['type'].map(dict1)
|
52 |
+
|
53 |
+
data.head()
|
54 |
+
|
55 |
+
X=data.drop('isFraud',axis=1)
|
56 |
+
|
57 |
+
X
|
58 |
+
|
59 |
+
y=data['isFraud']
|
60 |
+
|
61 |
+
y
|
62 |
+
|
63 |
+
from sklearn.model_selection import train_test_split
|
64 |
+
|
65 |
+
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=0)
|
66 |
+
|
67 |
+
print(X_train.shape)
|
68 |
+
print(X_test.shape)
|
69 |
+
print(y_train.shape)
|
70 |
+
print(y_test.shape)
|
71 |
+
|
72 |
+
from sklearn.preprocessing import StandardScaler
|
73 |
+
|
74 |
+
sc=StandardScaler()
|
75 |
+
|
76 |
+
X_train_sc=sc.fit_transform(X_train)
|
77 |
+
X_test_sc=sc.transform(X_test)
|
78 |
+
|
79 |
+
X_train_sc
|
80 |
+
|
81 |
+
X_test_sc
|
82 |
+
|
83 |
+
from sklearn.linear_model import LogisticRegression
|
84 |
+
|
85 |
+
model1=LogisticRegression()
|
86 |
+
|
87 |
+
model1.fit(X_train_sc,y_train)
|
88 |
+
|
89 |
+
y_pred1=model1.predict(X_test_sc)
|
90 |
+
|
91 |
+
from sklearn.metrics import classification_report
|
92 |
+
|
93 |
+
print(classification_report(y_test,y_pred1))
|
94 |
+
|
95 |
+
from sklearn.naive_bayes import GaussianNB
|
96 |
+
|
97 |
+
model2=GaussianNB()
|
98 |
+
|
99 |
+
model2.fit(X_train_sc,y_train)
|
100 |
+
|
101 |
+
y_pred2=model2.predict(X_test_sc)
|
102 |
+
|
103 |
+
print(classification_report(y_test,y_pred2))
|
104 |
+
|
105 |
+
from sklearn.neighbors import KNeighborsClassifier
|
106 |
+
|
107 |
+
model3=KNeighborsClassifier()
|
108 |
+
|
109 |
+
model3.fit(X_train_sc,y_train)
|
110 |
+
|
111 |
+
y_pred3=model3.predict(X_test_sc)
|
112 |
+
|
113 |
+
print(classification_report(y_test,y_pred3))
|
114 |
+
|
115 |
+
from sklearn.tree import DecisionTreeClassifier
|
116 |
+
|
117 |
+
model4=DecisionTreeClassifier()
|
118 |
+
|
119 |
+
model4.fit(X_train_sc,y_train)
|
120 |
+
|
121 |
+
y_pred4=model4.predict(X_test_sc)
|
122 |
+
|
123 |
+
print(classification_report(y_test,y_pred4))
|
124 |
+
|
125 |
+
from sklearn import tree
|
126 |
+
|
127 |
+
plt.figure(figsize=(10,10))
|
128 |
+
tree.plot_tree(model4,filled=True)
|
129 |
+
plt.show()
|
130 |
+
|
131 |
+
from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier
|
132 |
+
|
133 |
+
model5=RandomForestClassifier()
|
134 |
+
|
135 |
+
model5.fit(X_train_sc,y_train)
|
136 |
+
|
137 |
+
y_pred5=model5.predict(X_test_sc)
|
138 |
+
|
139 |
+
print(classification_report(y_test,y_pred5))
|
140 |
+
|
141 |
+
model6=AdaBoostClassifier()
|
142 |
+
|
143 |
+
model6.fit(X_train_sc,y_train)
|
144 |
+
|
145 |
+
y_pred6=model6.predict(X_test_sc)
|
146 |
+
|
147 |
+
print(classification_report(y_test,y_pred6))
|
148 |
+
|
149 |
+
model5.predict([[239,2,5178.72,400705.00,395526.28,0.00,0.00]])
|
150 |
+
|
151 |
+
model5.predict([[369,0,89596.79,89596.79,0.0,0.00,89596.79]])
|
152 |
+
|