|
import argparse
|
|
import cv2
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
from basicsr.utils import scandir
|
|
from multiprocessing import Pool
|
|
from os import path as osp
|
|
from tqdm import tqdm
|
|
|
|
|
|
def main(args):
|
|
"""A multi-thread tool to crop large images to sub-images for faster IO.
|
|
|
|
opt (dict): Configuration dict. It contains:
|
|
n_thread (int): Thread number.
|
|
compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size
|
|
and longer compression time. Use 0 for faster CPU decompression. Default: 3, same in cv2.
|
|
input_folder (str): Path to the input folder.
|
|
save_folder (str): Path to save folder.
|
|
crop_size (int): Crop size.
|
|
step (int): Step for overlapped sliding window.
|
|
thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped.
|
|
|
|
Usage:
|
|
For each folder, run this script.
|
|
Typically, there are GT folder and LQ folder to be processed for DIV2K dataset.
|
|
After process, each sub_folder should have the same number of subimages.
|
|
Remember to modify opt configurations according to your settings.
|
|
"""
|
|
|
|
opt = {}
|
|
opt['n_thread'] = args.n_thread
|
|
opt['compression_level'] = args.compression_level
|
|
opt['input_folder'] = args.input
|
|
opt['save_folder'] = args.output
|
|
opt['crop_size'] = args.crop_size
|
|
opt['step'] = args.step
|
|
opt['thresh_size'] = args.thresh_size
|
|
extract_subimages(opt)
|
|
|
|
|
|
def extract_subimages(opt):
|
|
"""Crop images to subimages.
|
|
|
|
Args:
|
|
opt (dict): Configuration dict. It contains:
|
|
input_folder (str): Path to the input folder.
|
|
save_folder (str): Path to save folder.
|
|
n_thread (int): Thread number.
|
|
"""
|
|
input_folder = opt['input_folder']
|
|
save_folder = opt['save_folder']
|
|
if not osp.exists(save_folder):
|
|
os.makedirs(save_folder)
|
|
print(f'mkdir {save_folder} ...')
|
|
else:
|
|
print(f'Folder {save_folder} already exists. Exit.')
|
|
sys.exit(1)
|
|
|
|
|
|
img_list = list(scandir(input_folder, full_path=True))
|
|
|
|
pbar = tqdm(total=len(img_list), unit='image', desc='Extract')
|
|
pool = Pool(opt['n_thread'])
|
|
for path in img_list:
|
|
pool.apply_async(worker, args=(path, opt), callback=lambda arg: pbar.update(1))
|
|
pool.close()
|
|
pool.join()
|
|
pbar.close()
|
|
print('All processes done.')
|
|
|
|
|
|
def worker(path, opt):
|
|
"""Worker for each process.
|
|
|
|
Args:
|
|
path (str): Image path.
|
|
opt (dict): Configuration dict. It contains:
|
|
crop_size (int): Crop size.
|
|
step (int): Step for overlapped sliding window.
|
|
thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped.
|
|
save_folder (str): Path to save folder.
|
|
compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION.
|
|
|
|
Returns:
|
|
process_info (str): Process information displayed in progress bar.
|
|
"""
|
|
crop_size = opt['crop_size']
|
|
step = opt['step']
|
|
thresh_size = opt['thresh_size']
|
|
img_name, extension = osp.splitext(osp.basename(path))
|
|
|
|
|
|
img_name = img_name.replace('x2', '').replace('x3', '').replace('x4', '').replace('x8', '')
|
|
|
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
|
|
|
h, w = img.shape[0:2]
|
|
h_space = np.arange(0, h - crop_size + 1, step)
|
|
if h - (h_space[-1] + crop_size) > thresh_size:
|
|
h_space = np.append(h_space, h - crop_size)
|
|
w_space = np.arange(0, w - crop_size + 1, step)
|
|
if w - (w_space[-1] + crop_size) > thresh_size:
|
|
w_space = np.append(w_space, w - crop_size)
|
|
|
|
index = 0
|
|
for x in h_space:
|
|
for y in w_space:
|
|
index += 1
|
|
cropped_img = img[x:x + crop_size, y:y + crop_size, ...]
|
|
cropped_img = np.ascontiguousarray(cropped_img)
|
|
cv2.imwrite(
|
|
osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img,
|
|
[cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']])
|
|
process_info = f'Processing {img_name} ...'
|
|
return process_info
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--input', type=str, default='datasets/DF2K/DF2K_HR', help='Input folder')
|
|
parser.add_argument('--output', type=str, default='datasets/DF2K/DF2K_HR_sub', help='Output folder')
|
|
parser.add_argument('--crop_size', type=int, default=480, help='Crop size')
|
|
parser.add_argument('--step', type=int, default=240, help='Step for overlapped sliding window')
|
|
parser.add_argument(
|
|
'--thresh_size',
|
|
type=int,
|
|
default=0,
|
|
help='Threshold size. Patches whose size is lower than thresh_size will be dropped.')
|
|
parser.add_argument('--n_thread', type=int, default=20, help='Thread number.')
|
|
parser.add_argument('--compression_level', type=int, default=3, help='Compression level')
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|
|
|