|
import argparse
|
|
import cv2
|
|
import glob
|
|
import os
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
from basicsr.utils.download_util import load_file_from_url
|
|
|
|
from realesrgan import RealESRGANer
|
|
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
|
|
|
|
|
def main():
|
|
"""Inference demo for Real-ESRGAN.
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
|
|
parser.add_argument(
|
|
'-n',
|
|
'--model_name',
|
|
type=str,
|
|
default='RealESRGAN_x4plus',
|
|
help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | '
|
|
'realesr-animevideov3 | realesr-general-x4v3'))
|
|
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
|
|
parser.add_argument(
|
|
'-dn',
|
|
'--denoise_strength',
|
|
type=float,
|
|
default=0.5,
|
|
help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. '
|
|
'Only used for the realesr-general-x4v3 model'))
|
|
parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
|
|
parser.add_argument(
|
|
'--model_path', type=str, default=None, help='[Option] Model path. Usually, you do not need to specify it')
|
|
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
|
|
parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
|
|
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
|
|
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
|
|
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
|
|
parser.add_argument(
|
|
'--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
|
|
parser.add_argument(
|
|
'--alpha_upsampler',
|
|
type=str,
|
|
default='realesrgan',
|
|
help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
|
|
parser.add_argument(
|
|
'--ext',
|
|
type=str,
|
|
default='auto',
|
|
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
|
|
parser.add_argument(
|
|
'-g', '--gpu-id', type=int, default=None, help='gpu device to use (default=None) can be 0,1,2 for multi-gpu')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
args.model_name = args.model_name.split('.')[0]
|
|
if args.model_name == 'RealESRGAN_x4plus':
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
netscale = 4
|
|
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
|
elif args.model_name == 'RealESRNet_x4plus':
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
netscale = 4
|
|
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
|
elif args.model_name == 'RealESRGAN_x4plus_anime_6B':
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
netscale = 4
|
|
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
|
elif args.model_name == 'RealESRGAN_x2plus':
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
netscale = 2
|
|
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
|
elif args.model_name == 'realesr-animevideov3':
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
|
|
netscale = 4
|
|
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth']
|
|
elif args.model_name == 'realesr-general-x4v3':
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
|
netscale = 4
|
|
file_url = [
|
|
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
|
|
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
|
]
|
|
|
|
|
|
if args.model_path is not None:
|
|
model_path = args.model_path
|
|
else:
|
|
model_path = os.path.join('weights', args.model_name + '.pth')
|
|
if not os.path.isfile(model_path):
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
for url in file_url:
|
|
|
|
model_path = load_file_from_url(
|
|
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
|
|
|
|
|
dni_weight = None
|
|
if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1:
|
|
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
|
model_path = [model_path, wdn_model_path]
|
|
dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
|
|
|
|
|
|
upsampler = RealESRGANer(
|
|
scale=netscale,
|
|
model_path=model_path,
|
|
dni_weight=dni_weight,
|
|
model=model,
|
|
tile=args.tile,
|
|
tile_pad=args.tile_pad,
|
|
pre_pad=args.pre_pad,
|
|
half=not args.fp32,
|
|
gpu_id=args.gpu_id)
|
|
|
|
if args.face_enhance:
|
|
from gfpgan import GFPGANer
|
|
face_enhancer = GFPGANer(
|
|
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
|
|
upscale=args.outscale,
|
|
arch='clean',
|
|
channel_multiplier=2,
|
|
bg_upsampler=upsampler)
|
|
os.makedirs(args.output, exist_ok=True)
|
|
|
|
if os.path.isfile(args.input):
|
|
paths = [args.input]
|
|
else:
|
|
paths = sorted(glob.glob(os.path.join(args.input, '*')))
|
|
|
|
for idx, path in enumerate(paths):
|
|
imgname, extension = os.path.splitext(os.path.basename(path))
|
|
print('Testing', idx, imgname)
|
|
|
|
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
|
if len(img.shape) == 3 and img.shape[2] == 4:
|
|
img_mode = 'RGBA'
|
|
else:
|
|
img_mode = None
|
|
|
|
try:
|
|
if args.face_enhance:
|
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
else:
|
|
output, _ = upsampler.enhance(img, outscale=args.outscale)
|
|
except RuntimeError as error:
|
|
print('Error', error)
|
|
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
|
else:
|
|
if args.ext == 'auto':
|
|
extension = extension[1:]
|
|
else:
|
|
extension = args.ext
|
|
if img_mode == 'RGBA':
|
|
extension = 'png'
|
|
if args.suffix == '':
|
|
save_path = os.path.join(args.output, f'{imgname}.{extension}')
|
|
else:
|
|
save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
|
|
cv2.imwrite(save_path, output)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|