|
import torch
|
|
from collections import OrderedDict
|
|
|
|
from basicsr.archs import build_network
|
|
from basicsr.losses import build_loss
|
|
from basicsr.utils import get_root_logger
|
|
from basicsr.utils.registry import MODEL_REGISTRY
|
|
from .sr_model import SRModel
|
|
|
|
|
|
@MODEL_REGISTRY.register()
|
|
class SRGANModel(SRModel):
|
|
"""SRGAN model for single image super-resolution."""
|
|
|
|
def init_training_settings(self):
|
|
train_opt = self.opt['train']
|
|
|
|
self.ema_decay = train_opt.get('ema_decay', 0)
|
|
if self.ema_decay > 0:
|
|
logger = get_root_logger()
|
|
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
|
|
|
|
|
|
|
|
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
|
|
|
|
load_path = self.opt['path'].get('pretrain_network_g', None)
|
|
if load_path is not None:
|
|
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
|
|
else:
|
|
self.model_ema(0)
|
|
self.net_g_ema.eval()
|
|
|
|
|
|
self.net_d = build_network(self.opt['network_d'])
|
|
self.net_d = self.model_to_device(self.net_d)
|
|
self.print_network(self.net_d)
|
|
|
|
|
|
load_path = self.opt['path'].get('pretrain_network_d', None)
|
|
if load_path is not None:
|
|
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
|
|
|
|
self.net_g.train()
|
|
self.net_d.train()
|
|
|
|
|
|
if train_opt.get('pixel_opt'):
|
|
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
|
|
else:
|
|
self.cri_pix = None
|
|
|
|
if train_opt.get('perceptual_opt'):
|
|
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
|
|
else:
|
|
self.cri_perceptual = None
|
|
|
|
if train_opt.get('gan_opt'):
|
|
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
|
|
|
|
self.net_d_iters = train_opt.get('net_d_iters', 1)
|
|
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)
|
|
|
|
|
|
self.setup_optimizers()
|
|
self.setup_schedulers()
|
|
|
|
def setup_optimizers(self):
|
|
train_opt = self.opt['train']
|
|
|
|
optim_type = train_opt['optim_g'].pop('type')
|
|
self.optimizer_g = self.get_optimizer(optim_type, self.net_g.parameters(), **train_opt['optim_g'])
|
|
self.optimizers.append(self.optimizer_g)
|
|
|
|
optim_type = train_opt['optim_d'].pop('type')
|
|
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
|
|
self.optimizers.append(self.optimizer_d)
|
|
|
|
def optimize_parameters(self, current_iter):
|
|
|
|
for p in self.net_d.parameters():
|
|
p.requires_grad = False
|
|
|
|
self.optimizer_g.zero_grad()
|
|
self.output = self.net_g(self.lq)
|
|
|
|
l_g_total = 0
|
|
loss_dict = OrderedDict()
|
|
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
|
|
|
|
if self.cri_pix:
|
|
l_g_pix = self.cri_pix(self.output, self.gt)
|
|
l_g_total += l_g_pix
|
|
loss_dict['l_g_pix'] = l_g_pix
|
|
|
|
if self.cri_perceptual:
|
|
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt)
|
|
if l_g_percep is not None:
|
|
l_g_total += l_g_percep
|
|
loss_dict['l_g_percep'] = l_g_percep
|
|
if l_g_style is not None:
|
|
l_g_total += l_g_style
|
|
loss_dict['l_g_style'] = l_g_style
|
|
|
|
fake_g_pred = self.net_d(self.output)
|
|
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
|
|
l_g_total += l_g_gan
|
|
loss_dict['l_g_gan'] = l_g_gan
|
|
|
|
l_g_total.backward()
|
|
self.optimizer_g.step()
|
|
|
|
|
|
for p in self.net_d.parameters():
|
|
p.requires_grad = True
|
|
|
|
self.optimizer_d.zero_grad()
|
|
|
|
real_d_pred = self.net_d(self.gt)
|
|
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
|
|
loss_dict['l_d_real'] = l_d_real
|
|
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
|
|
l_d_real.backward()
|
|
|
|
fake_d_pred = self.net_d(self.output.detach())
|
|
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
|
|
loss_dict['l_d_fake'] = l_d_fake
|
|
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
|
|
l_d_fake.backward()
|
|
self.optimizer_d.step()
|
|
|
|
self.log_dict = self.reduce_loss_dict(loss_dict)
|
|
|
|
if self.ema_decay > 0:
|
|
self.model_ema(decay=self.ema_decay)
|
|
|
|
def save(self, epoch, current_iter):
|
|
if hasattr(self, 'net_g_ema'):
|
|
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
|
|
else:
|
|
self.save_network(self.net_g, 'net_g', current_iter)
|
|
self.save_network(self.net_d, 'net_d', current_iter)
|
|
self.save_training_state(epoch, current_iter)
|
|
|