|
import importlib
|
|
import numpy as np
|
|
import random
|
|
import torch
|
|
import torch.utils.data
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
from os import path as osp
|
|
|
|
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
|
|
from basicsr.utils import get_root_logger, scandir
|
|
from basicsr.utils.dist_util import get_dist_info
|
|
from basicsr.utils.registry import DATASET_REGISTRY
|
|
|
|
__all__ = ['build_dataset', 'build_dataloader']
|
|
|
|
|
|
|
|
data_folder = osp.dirname(osp.abspath(__file__))
|
|
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
|
|
|
|
_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
|
|
|
|
|
|
def build_dataset(dataset_opt):
|
|
"""Build dataset from options.
|
|
|
|
Args:
|
|
dataset_opt (dict): Configuration for dataset. It must constain:
|
|
name (str): Dataset name.
|
|
type (str): Dataset type.
|
|
"""
|
|
dataset_opt = deepcopy(dataset_opt)
|
|
dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
|
|
logger = get_root_logger()
|
|
logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} ' 'is built.')
|
|
return dataset
|
|
|
|
|
|
def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
|
|
"""Build dataloader.
|
|
|
|
Args:
|
|
dataset (torch.utils.data.Dataset): Dataset.
|
|
dataset_opt (dict): Dataset options. It contains the following keys:
|
|
phase (str): 'train' or 'val'.
|
|
num_worker_per_gpu (int): Number of workers for each GPU.
|
|
batch_size_per_gpu (int): Training batch size for each GPU.
|
|
num_gpu (int): Number of GPUs. Used only in the train phase.
|
|
Default: 1.
|
|
dist (bool): Whether in distributed training. Used only in the train
|
|
phase. Default: False.
|
|
sampler (torch.utils.data.sampler): Data sampler. Default: None.
|
|
seed (int | None): Seed. Default: None
|
|
"""
|
|
phase = dataset_opt['phase']
|
|
rank, _ = get_dist_info()
|
|
if phase == 'train':
|
|
if dist:
|
|
batch_size = dataset_opt['batch_size_per_gpu']
|
|
num_workers = dataset_opt['num_worker_per_gpu']
|
|
else:
|
|
multiplier = 1 if num_gpu == 0 else num_gpu
|
|
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
|
|
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
|
|
dataloader_args = dict(
|
|
dataset=dataset,
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
num_workers=num_workers,
|
|
sampler=sampler,
|
|
drop_last=True)
|
|
if sampler is None:
|
|
dataloader_args['shuffle'] = True
|
|
dataloader_args['worker_init_fn'] = partial(
|
|
worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
|
|
elif phase in ['val', 'test']:
|
|
dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
|
else:
|
|
raise ValueError(f'Wrong dataset phase: {phase}. ' "Supported ones are 'train', 'val' and 'test'.")
|
|
|
|
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
|
|
|
|
prefetch_mode = dataset_opt.get('prefetch_mode')
|
|
if prefetch_mode == 'cpu':
|
|
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
|
|
logger = get_root_logger()
|
|
logger.info(f'Use {prefetch_mode} prefetch dataloader: ' f'num_prefetch_queue = {num_prefetch_queue}')
|
|
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
|
|
else:
|
|
|
|
|
|
return torch.utils.data.DataLoader(**dataloader_args)
|
|
|
|
|
|
def worker_init_fn(worker_id, num_workers, rank, seed):
|
|
|
|
worker_seed = num_workers * rank + worker_id + seed
|
|
np.random.seed(worker_seed)
|
|
random.seed(worker_seed)
|
|
|