|
import torch
|
|
import torch.nn as nn
|
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY
|
|
from .arch_util import ResidualBlockNoBN, make_layer
|
|
|
|
|
|
class MeanShift(nn.Conv2d):
|
|
""" Data normalization with mean and std.
|
|
|
|
Args:
|
|
rgb_range (int): Maximum value of RGB.
|
|
rgb_mean (list[float]): Mean for RGB channels.
|
|
rgb_std (list[float]): Std for RGB channels.
|
|
sign (int): For substraction, sign is -1, for addition, sign is 1.
|
|
Default: -1.
|
|
requires_grad (bool): Whether to update the self.weight and self.bias.
|
|
Default: True.
|
|
"""
|
|
|
|
def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1, requires_grad=True):
|
|
super(MeanShift, self).__init__(3, 3, kernel_size=1)
|
|
std = torch.Tensor(rgb_std)
|
|
self.weight.data = torch.eye(3).view(3, 3, 1, 1)
|
|
self.weight.data.div_(std.view(3, 1, 1, 1))
|
|
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
|
|
self.bias.data.div_(std)
|
|
self.requires_grad = requires_grad
|
|
|
|
|
|
class EResidualBlockNoBN(nn.Module):
|
|
"""Enhanced Residual block without BN.
|
|
|
|
There are three convolution layers in residual branch.
|
|
|
|
It has a style of:
|
|
---Conv-ReLU-Conv-ReLU-Conv-+-ReLU-
|
|
|__________________________|
|
|
"""
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
super(EResidualBlockNoBN, self).__init__()
|
|
|
|
self.body = nn.Sequential(
|
|
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(out_channels, out_channels, 1, 1, 0),
|
|
)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
out = self.body(x)
|
|
out = self.relu(out + x)
|
|
return out
|
|
|
|
|
|
class MergeRun(nn.Module):
|
|
""" Merge-and-run unit.
|
|
|
|
This unit contains two branches with different dilated convolutions,
|
|
followed by a convolution to process the concatenated features.
|
|
|
|
Paper: Real Image Denoising with Feature Attention
|
|
Ref git repo: https://github.com/saeed-anwar/RIDNet
|
|
"""
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
|
|
super(MergeRun, self).__init__()
|
|
|
|
self.dilation1 = nn.Sequential(
|
|
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True),
|
|
nn.Conv2d(out_channels, out_channels, kernel_size, stride, 2, 2), nn.ReLU(inplace=True))
|
|
self.dilation2 = nn.Sequential(
|
|
nn.Conv2d(in_channels, out_channels, kernel_size, stride, 3, 3), nn.ReLU(inplace=True),
|
|
nn.Conv2d(out_channels, out_channels, kernel_size, stride, 4, 4), nn.ReLU(inplace=True))
|
|
|
|
self.aggregation = nn.Sequential(
|
|
nn.Conv2d(out_channels * 2, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True))
|
|
|
|
def forward(self, x):
|
|
dilation1 = self.dilation1(x)
|
|
dilation2 = self.dilation2(x)
|
|
out = torch.cat([dilation1, dilation2], dim=1)
|
|
out = self.aggregation(out)
|
|
out = out + x
|
|
return out
|
|
|
|
|
|
class ChannelAttention(nn.Module):
|
|
"""Channel attention.
|
|
|
|
Args:
|
|
num_feat (int): Channel number of intermediate features.
|
|
squeeze_factor (int): Channel squeeze factor. Default:
|
|
"""
|
|
|
|
def __init__(self, mid_channels, squeeze_factor=16):
|
|
super(ChannelAttention, self).__init__()
|
|
self.attention = nn.Sequential(
|
|
nn.AdaptiveAvgPool2d(1), nn.Conv2d(mid_channels, mid_channels // squeeze_factor, 1, padding=0),
|
|
nn.ReLU(inplace=True), nn.Conv2d(mid_channels // squeeze_factor, mid_channels, 1, padding=0), nn.Sigmoid())
|
|
|
|
def forward(self, x):
|
|
y = self.attention(x)
|
|
return x * y
|
|
|
|
|
|
class EAM(nn.Module):
|
|
"""Enhancement attention modules (EAM) in RIDNet.
|
|
|
|
This module contains a merge-and-run unit, a residual block,
|
|
an enhanced residual block and a feature attention unit.
|
|
|
|
Attributes:
|
|
merge: The merge-and-run unit.
|
|
block1: The residual block.
|
|
block2: The enhanced residual block.
|
|
ca: The feature/channel attention unit.
|
|
"""
|
|
|
|
def __init__(self, in_channels, mid_channels, out_channels):
|
|
super(EAM, self).__init__()
|
|
|
|
self.merge = MergeRun(in_channels, mid_channels)
|
|
self.block1 = ResidualBlockNoBN(mid_channels)
|
|
self.block2 = EResidualBlockNoBN(mid_channels, out_channels)
|
|
self.ca = ChannelAttention(out_channels)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
out = self.merge(x)
|
|
out = self.relu(self.block1(out))
|
|
out = self.block2(out)
|
|
out = self.ca(out)
|
|
return out
|
|
|
|
|
|
@ARCH_REGISTRY.register()
|
|
class RIDNet(nn.Module):
|
|
"""RIDNet: Real Image Denoising with Feature Attention.
|
|
|
|
Ref git repo: https://github.com/saeed-anwar/RIDNet
|
|
|
|
Args:
|
|
in_channels (int): Channel number of inputs.
|
|
mid_channels (int): Channel number of EAM modules.
|
|
Default: 64.
|
|
out_channels (int): Channel number of outputs.
|
|
num_block (int): Number of EAM. Default: 4.
|
|
img_range (float): Image range. Default: 255.
|
|
rgb_mean (tuple[float]): Image mean in RGB orders.
|
|
Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
mid_channels,
|
|
out_channels,
|
|
num_block=4,
|
|
img_range=255.,
|
|
rgb_mean=(0.4488, 0.4371, 0.4040),
|
|
rgb_std=(1.0, 1.0, 1.0)):
|
|
super(RIDNet, self).__init__()
|
|
|
|
self.sub_mean = MeanShift(img_range, rgb_mean, rgb_std)
|
|
self.add_mean = MeanShift(img_range, rgb_mean, rgb_std, 1)
|
|
|
|
self.head = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
|
|
self.body = make_layer(
|
|
EAM, num_block, in_channels=mid_channels, mid_channels=mid_channels, out_channels=mid_channels)
|
|
self.tail = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
res = self.sub_mean(x)
|
|
res = self.tail(self.body(self.relu(self.head(res))))
|
|
res = self.add_mean(res)
|
|
|
|
out = x + res
|
|
return out
|
|
|