|
import torch
|
|
from torch import nn as nn
|
|
from torch.nn import functional as F
|
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY
|
|
from .arch_util import DCNv2Pack, ResidualBlockNoBN, make_layer
|
|
|
|
|
|
class PCDAlignment(nn.Module):
|
|
"""Alignment module using Pyramid, Cascading and Deformable convolution
|
|
(PCD). It is used in EDVR.
|
|
|
|
Ref:
|
|
EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
|
|
|
|
Args:
|
|
num_feat (int): Channel number of middle features. Default: 64.
|
|
deformable_groups (int): Deformable groups. Defaults: 8.
|
|
"""
|
|
|
|
def __init__(self, num_feat=64, deformable_groups=8):
|
|
super(PCDAlignment, self).__init__()
|
|
|
|
|
|
|
|
|
|
|
|
self.offset_conv1 = nn.ModuleDict()
|
|
self.offset_conv2 = nn.ModuleDict()
|
|
self.offset_conv3 = nn.ModuleDict()
|
|
self.dcn_pack = nn.ModuleDict()
|
|
self.feat_conv = nn.ModuleDict()
|
|
|
|
|
|
for i in range(3, 0, -1):
|
|
level = f'l{i}'
|
|
self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
|
if i == 3:
|
|
self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
else:
|
|
self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
|
self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.dcn_pack[level] = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
|
|
|
|
if i < 3:
|
|
self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
|
|
|
|
|
self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
|
self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.cas_dcnpack = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
|
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
|
|
def forward(self, nbr_feat_l, ref_feat_l):
|
|
"""Align neighboring frame features to the reference frame features.
|
|
|
|
Args:
|
|
nbr_feat_l (list[Tensor]): Neighboring feature list. It
|
|
contains three pyramid levels (L1, L2, L3),
|
|
each with shape (b, c, h, w).
|
|
ref_feat_l (list[Tensor]): Reference feature list. It
|
|
contains three pyramid levels (L1, L2, L3),
|
|
each with shape (b, c, h, w).
|
|
|
|
Returns:
|
|
Tensor: Aligned features.
|
|
"""
|
|
|
|
upsampled_offset, upsampled_feat = None, None
|
|
for i in range(3, 0, -1):
|
|
level = f'l{i}'
|
|
offset = torch.cat([nbr_feat_l[i - 1], ref_feat_l[i - 1]], dim=1)
|
|
offset = self.lrelu(self.offset_conv1[level](offset))
|
|
if i == 3:
|
|
offset = self.lrelu(self.offset_conv2[level](offset))
|
|
else:
|
|
offset = self.lrelu(self.offset_conv2[level](torch.cat([offset, upsampled_offset], dim=1)))
|
|
offset = self.lrelu(self.offset_conv3[level](offset))
|
|
|
|
feat = self.dcn_pack[level](nbr_feat_l[i - 1], offset)
|
|
if i < 3:
|
|
feat = self.feat_conv[level](torch.cat([feat, upsampled_feat], dim=1))
|
|
if i > 1:
|
|
feat = self.lrelu(feat)
|
|
|
|
if i > 1:
|
|
|
|
|
|
upsampled_offset = self.upsample(offset) * 2
|
|
upsampled_feat = self.upsample(feat)
|
|
|
|
|
|
offset = torch.cat([feat, ref_feat_l[0]], dim=1)
|
|
offset = self.lrelu(self.cas_offset_conv2(self.lrelu(self.cas_offset_conv1(offset))))
|
|
feat = self.lrelu(self.cas_dcnpack(feat, offset))
|
|
return feat
|
|
|
|
|
|
class TSAFusion(nn.Module):
|
|
"""Temporal Spatial Attention (TSA) fusion module.
|
|
|
|
Temporal: Calculate the correlation between center frame and
|
|
neighboring frames;
|
|
Spatial: It has 3 pyramid levels, the attention is similar to SFT.
|
|
(SFT: Recovering realistic texture in image super-resolution by deep
|
|
spatial feature transform.)
|
|
|
|
Args:
|
|
num_feat (int): Channel number of middle features. Default: 64.
|
|
num_frame (int): Number of frames. Default: 5.
|
|
center_frame_idx (int): The index of center frame. Default: 2.
|
|
"""
|
|
|
|
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
|
|
super(TSAFusion, self).__init__()
|
|
self.center_frame_idx = center_frame_idx
|
|
|
|
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
|
|
|
|
|
|
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
|
|
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
|
|
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
|
|
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
|
|
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
|
|
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
|
|
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
|
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
|
|
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
|
|
|
def forward(self, aligned_feat):
|
|
"""
|
|
Args:
|
|
aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).
|
|
|
|
Returns:
|
|
Tensor: Features after TSA with the shape (b, c, h, w).
|
|
"""
|
|
b, t, c, h, w = aligned_feat.size()
|
|
|
|
embedding_ref = self.temporal_attn1(aligned_feat[:, self.center_frame_idx, :, :, :].clone())
|
|
embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
|
|
embedding = embedding.view(b, t, -1, h, w)
|
|
|
|
corr_l = []
|
|
for i in range(t):
|
|
emb_neighbor = embedding[:, i, :, :, :]
|
|
corr = torch.sum(emb_neighbor * embedding_ref, 1)
|
|
corr_l.append(corr.unsqueeze(1))
|
|
corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1))
|
|
corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
|
|
corr_prob = corr_prob.contiguous().view(b, -1, h, w)
|
|
aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob
|
|
|
|
|
|
feat = self.lrelu(self.feat_fusion(aligned_feat))
|
|
|
|
|
|
attn = self.lrelu(self.spatial_attn1(aligned_feat))
|
|
attn_max = self.max_pool(attn)
|
|
attn_avg = self.avg_pool(attn)
|
|
attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1)))
|
|
|
|
attn_level = self.lrelu(self.spatial_attn_l1(attn))
|
|
attn_max = self.max_pool(attn_level)
|
|
attn_avg = self.avg_pool(attn_level)
|
|
attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1)))
|
|
attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
|
|
attn_level = self.upsample(attn_level)
|
|
|
|
attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
|
|
attn = self.lrelu(self.spatial_attn4(attn))
|
|
attn = self.upsample(attn)
|
|
attn = self.spatial_attn5(attn)
|
|
attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1(attn)))
|
|
attn = torch.sigmoid(attn)
|
|
|
|
|
|
feat = feat * attn * 2 + attn_add
|
|
return feat
|
|
|
|
|
|
class PredeblurModule(nn.Module):
|
|
"""Pre-dublur module.
|
|
|
|
Args:
|
|
num_in_ch (int): Channel number of input image. Default: 3.
|
|
num_feat (int): Channel number of intermediate features. Default: 64.
|
|
hr_in (bool): Whether the input has high resolution. Default: False.
|
|
"""
|
|
|
|
def __init__(self, num_in_ch=3, num_feat=64, hr_in=False):
|
|
super(PredeblurModule, self).__init__()
|
|
self.hr_in = hr_in
|
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
|
if self.hr_in:
|
|
|
|
self.stride_conv_hr1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
|
self.stride_conv_hr2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
|
|
|
|
|
self.stride_conv_l2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
|
self.stride_conv_l3 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
|
|
|
self.resblock_l3 = ResidualBlockNoBN(num_feat=num_feat)
|
|
self.resblock_l2_1 = ResidualBlockNoBN(num_feat=num_feat)
|
|
self.resblock_l2_2 = ResidualBlockNoBN(num_feat=num_feat)
|
|
self.resblock_l1 = nn.ModuleList([ResidualBlockNoBN(num_feat=num_feat) for i in range(5)])
|
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
|
|
def forward(self, x):
|
|
feat_l1 = self.lrelu(self.conv_first(x))
|
|
if self.hr_in:
|
|
feat_l1 = self.lrelu(self.stride_conv_hr1(feat_l1))
|
|
feat_l1 = self.lrelu(self.stride_conv_hr2(feat_l1))
|
|
|
|
|
|
feat_l2 = self.lrelu(self.stride_conv_l2(feat_l1))
|
|
feat_l3 = self.lrelu(self.stride_conv_l3(feat_l2))
|
|
|
|
feat_l3 = self.upsample(self.resblock_l3(feat_l3))
|
|
feat_l2 = self.resblock_l2_1(feat_l2) + feat_l3
|
|
feat_l2 = self.upsample(self.resblock_l2_2(feat_l2))
|
|
|
|
for i in range(2):
|
|
feat_l1 = self.resblock_l1[i](feat_l1)
|
|
feat_l1 = feat_l1 + feat_l2
|
|
for i in range(2, 5):
|
|
feat_l1 = self.resblock_l1[i](feat_l1)
|
|
return feat_l1
|
|
|
|
|
|
@ARCH_REGISTRY.register()
|
|
class EDVR(nn.Module):
|
|
"""EDVR network structure for video super-resolution.
|
|
|
|
Now only support X4 upsampling factor.
|
|
Paper:
|
|
EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
|
|
|
|
Args:
|
|
num_in_ch (int): Channel number of input image. Default: 3.
|
|
num_out_ch (int): Channel number of output image. Default: 3.
|
|
num_feat (int): Channel number of intermediate features. Default: 64.
|
|
num_frame (int): Number of input frames. Default: 5.
|
|
deformable_groups (int): Deformable groups. Defaults: 8.
|
|
num_extract_block (int): Number of blocks for feature extraction.
|
|
Default: 5.
|
|
num_reconstruct_block (int): Number of blocks for reconstruction.
|
|
Default: 10.
|
|
center_frame_idx (int): The index of center frame. Frame counting from
|
|
0. Default: Middle of input frames.
|
|
hr_in (bool): Whether the input has high resolution. Default: False.
|
|
with_predeblur (bool): Whether has predeblur module.
|
|
Default: False.
|
|
with_tsa (bool): Whether has TSA module. Default: True.
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_in_ch=3,
|
|
num_out_ch=3,
|
|
num_feat=64,
|
|
num_frame=5,
|
|
deformable_groups=8,
|
|
num_extract_block=5,
|
|
num_reconstruct_block=10,
|
|
center_frame_idx=None,
|
|
hr_in=False,
|
|
with_predeblur=False,
|
|
with_tsa=True):
|
|
super(EDVR, self).__init__()
|
|
if center_frame_idx is None:
|
|
self.center_frame_idx = num_frame // 2
|
|
else:
|
|
self.center_frame_idx = center_frame_idx
|
|
self.hr_in = hr_in
|
|
self.with_predeblur = with_predeblur
|
|
self.with_tsa = with_tsa
|
|
|
|
|
|
if self.with_predeblur:
|
|
self.predeblur = PredeblurModule(num_feat=num_feat, hr_in=self.hr_in)
|
|
self.conv_1x1 = nn.Conv2d(num_feat, num_feat, 1, 1)
|
|
else:
|
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
|
|
|
|
|
self.feature_extraction = make_layer(ResidualBlockNoBN, num_extract_block, num_feat=num_feat)
|
|
self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
|
self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
|
self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
|
|
|
|
|
self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=deformable_groups)
|
|
if self.with_tsa:
|
|
self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_frame, center_frame_idx=self.center_frame_idx)
|
|
else:
|
|
self.fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
|
|
|
|
|
|
self.reconstruction = make_layer(ResidualBlockNoBN, num_reconstruct_block, num_feat=num_feat)
|
|
|
|
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
|
|
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1)
|
|
self.pixel_shuffle = nn.PixelShuffle(2)
|
|
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
|
|
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
|
|
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
|
|
def forward(self, x):
|
|
b, t, c, h, w = x.size()
|
|
if self.hr_in:
|
|
assert h % 16 == 0 and w % 16 == 0, ('The height and width must be multiple of 16.')
|
|
else:
|
|
assert h % 4 == 0 and w % 4 == 0, ('The height and width must be multiple of 4.')
|
|
|
|
x_center = x[:, self.center_frame_idx, :, :, :].contiguous()
|
|
|
|
|
|
|
|
if self.with_predeblur:
|
|
feat_l1 = self.conv_1x1(self.predeblur(x.view(-1, c, h, w)))
|
|
if self.hr_in:
|
|
h, w = h // 4, w // 4
|
|
else:
|
|
feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
|
|
|
|
feat_l1 = self.feature_extraction(feat_l1)
|
|
|
|
feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
|
|
feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
|
|
|
|
feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
|
|
feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
|
|
|
|
feat_l1 = feat_l1.view(b, t, -1, h, w)
|
|
feat_l2 = feat_l2.view(b, t, -1, h // 2, w // 2)
|
|
feat_l3 = feat_l3.view(b, t, -1, h // 4, w // 4)
|
|
|
|
|
|
ref_feat_l = [
|
|
feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
|
|
feat_l3[:, self.center_frame_idx, :, :, :].clone()
|
|
]
|
|
aligned_feat = []
|
|
for i in range(t):
|
|
nbr_feat_l = [
|
|
feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
|
|
]
|
|
aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
|
|
aligned_feat = torch.stack(aligned_feat, dim=1)
|
|
|
|
if not self.with_tsa:
|
|
aligned_feat = aligned_feat.view(b, -1, h, w)
|
|
feat = self.fusion(aligned_feat)
|
|
|
|
out = self.reconstruction(feat)
|
|
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
|
|
out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
|
|
out = self.lrelu(self.conv_hr(out))
|
|
out = self.conv_last(out)
|
|
if self.hr_in:
|
|
base = x_center
|
|
else:
|
|
base = F.interpolate(x_center, scale_factor=4, mode='bilinear', align_corners=False)
|
|
out += base
|
|
return out
|
|
|