|
import math
|
|
import torch
|
|
from torch import nn as nn
|
|
from torch.nn import functional as F
|
|
from torch.nn import init as init
|
|
from torch.nn.modules.batchnorm import _BatchNorm
|
|
|
|
from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
|
|
from basicsr.utils import get_root_logger
|
|
|
|
|
|
@torch.no_grad()
|
|
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
|
"""Initialize network weights.
|
|
|
|
Args:
|
|
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
|
scale (float): Scale initialized weights, especially for residual
|
|
blocks. Default: 1.
|
|
bias_fill (float): The value to fill bias. Default: 0
|
|
kwargs (dict): Other arguments for initialization function.
|
|
"""
|
|
if not isinstance(module_list, list):
|
|
module_list = [module_list]
|
|
for module in module_list:
|
|
for m in module.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
init.kaiming_normal_(m.weight, **kwargs)
|
|
m.weight.data *= scale
|
|
if m.bias is not None:
|
|
m.bias.data.fill_(bias_fill)
|
|
elif isinstance(m, nn.Linear):
|
|
init.kaiming_normal_(m.weight, **kwargs)
|
|
m.weight.data *= scale
|
|
if m.bias is not None:
|
|
m.bias.data.fill_(bias_fill)
|
|
elif isinstance(m, _BatchNorm):
|
|
init.constant_(m.weight, 1)
|
|
if m.bias is not None:
|
|
m.bias.data.fill_(bias_fill)
|
|
|
|
|
|
def make_layer(basic_block, num_basic_block, **kwarg):
|
|
"""Make layers by stacking the same blocks.
|
|
|
|
Args:
|
|
basic_block (nn.module): nn.module class for basic block.
|
|
num_basic_block (int): number of blocks.
|
|
|
|
Returns:
|
|
nn.Sequential: Stacked blocks in nn.Sequential.
|
|
"""
|
|
layers = []
|
|
for _ in range(num_basic_block):
|
|
layers.append(basic_block(**kwarg))
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
class ResidualBlockNoBN(nn.Module):
|
|
"""Residual block without BN.
|
|
|
|
It has a style of:
|
|
---Conv-ReLU-Conv-+-
|
|
|________________|
|
|
|
|
Args:
|
|
num_feat (int): Channel number of intermediate features.
|
|
Default: 64.
|
|
res_scale (float): Residual scale. Default: 1.
|
|
pytorch_init (bool): If set to True, use pytorch default init,
|
|
otherwise, use default_init_weights. Default: False.
|
|
"""
|
|
|
|
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
|
super(ResidualBlockNoBN, self).__init__()
|
|
self.res_scale = res_scale
|
|
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
|
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
if not pytorch_init:
|
|
default_init_weights([self.conv1, self.conv2], 0.1)
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
out = self.conv2(self.relu(self.conv1(x)))
|
|
return identity + out * self.res_scale
|
|
|
|
|
|
class Upsample(nn.Sequential):
|
|
"""Upsample module.
|
|
|
|
Args:
|
|
scale (int): Scale factor. Supported scales: 2^n and 3.
|
|
num_feat (int): Channel number of intermediate features.
|
|
"""
|
|
|
|
def __init__(self, scale, num_feat):
|
|
m = []
|
|
if (scale & (scale - 1)) == 0:
|
|
for _ in range(int(math.log(scale, 2))):
|
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(2))
|
|
elif scale == 3:
|
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
|
m.append(nn.PixelShuffle(3))
|
|
else:
|
|
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
|
super(Upsample, self).__init__(*m)
|
|
|
|
|
|
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
|
"""Warp an image or feature map with optical flow.
|
|
|
|
Args:
|
|
x (Tensor): Tensor with size (n, c, h, w).
|
|
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
|
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
|
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
|
Default: 'zeros'.
|
|
align_corners (bool): Before pytorch 1.3, the default value is
|
|
align_corners=True. After pytorch 1.3, the default value is
|
|
align_corners=False. Here, we use the True as default.
|
|
|
|
Returns:
|
|
Tensor: Warped image or feature map.
|
|
"""
|
|
assert x.size()[-2:] == flow.size()[1:3]
|
|
_, _, h, w = x.size()
|
|
|
|
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
|
grid = torch.stack((grid_x, grid_y), 2).float()
|
|
grid.requires_grad = False
|
|
|
|
vgrid = grid + flow
|
|
|
|
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
|
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
|
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
|
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
|
|
|
|
|
return output
|
|
|
|
|
|
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
|
"""Resize a flow according to ratio or shape.
|
|
|
|
Args:
|
|
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
|
size_type (str): 'ratio' or 'shape'.
|
|
sizes (list[int | float]): the ratio for resizing or the final output
|
|
shape.
|
|
1) The order of ratio should be [ratio_h, ratio_w]. For
|
|
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
|
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
|
ratio > 1.0).
|
|
2) The order of output_size should be [out_h, out_w].
|
|
interp_mode (str): The mode of interpolation for resizing.
|
|
Default: 'bilinear'.
|
|
align_corners (bool): Whether align corners. Default: False.
|
|
|
|
Returns:
|
|
Tensor: Resized flow.
|
|
"""
|
|
_, _, flow_h, flow_w = flow.size()
|
|
if size_type == 'ratio':
|
|
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
|
elif size_type == 'shape':
|
|
output_h, output_w = sizes[0], sizes[1]
|
|
else:
|
|
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
|
|
|
input_flow = flow.clone()
|
|
ratio_h = output_h / flow_h
|
|
ratio_w = output_w / flow_w
|
|
input_flow[:, 0, :, :] *= ratio_w
|
|
input_flow[:, 1, :, :] *= ratio_h
|
|
resized_flow = F.interpolate(
|
|
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
|
return resized_flow
|
|
|
|
|
|
|
|
def pixel_unshuffle(x, scale):
|
|
""" Pixel unshuffle.
|
|
|
|
Args:
|
|
x (Tensor): Input feature with shape (b, c, hh, hw).
|
|
scale (int): Downsample ratio.
|
|
|
|
Returns:
|
|
Tensor: the pixel unshuffled feature.
|
|
"""
|
|
b, c, hh, hw = x.size()
|
|
out_channel = c * (scale**2)
|
|
assert hh % scale == 0 and hw % scale == 0
|
|
h = hh // scale
|
|
w = hw // scale
|
|
x_view = x.view(b, c, h, scale, w, scale)
|
|
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
|
|
|
|
|
class DCNv2Pack(ModulatedDeformConvPack):
|
|
"""Modulated deformable conv for deformable alignment.
|
|
|
|
Different from the official DCNv2Pack, which generates offsets and masks
|
|
from the preceding features, this DCNv2Pack takes another different
|
|
features to generate offsets and masks.
|
|
|
|
Ref:
|
|
Delving Deep into Deformable Alignment in Video Super-Resolution.
|
|
"""
|
|
|
|
def forward(self, x, feat):
|
|
out = self.conv_offset(feat)
|
|
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
|
offset = torch.cat((o1, o2), dim=1)
|
|
mask = torch.sigmoid(mask)
|
|
|
|
offset_absmean = torch.mean(torch.abs(offset))
|
|
if offset_absmean > 50:
|
|
logger = get_root_logger()
|
|
logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
|
|
|
|
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation,
|
|
self.groups, self.deformable_groups)
|
|
|