Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar-test.zip +3 -0
- lunar-test/_stable_baselines3_version +1 -0
- lunar-test/data +94 -0
- lunar-test/policy.optimizer.pth +3 -0
- lunar-test/policy.pth +3 -0
- lunar-test/pytorch_variables.pth +3 -0
- lunar-test/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 151.64 +/- 38.53
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03437dc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03437dcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03437dd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03437ddd0>", "_build": "<function ActorCriticPolicy._build at 0x7fb03437de60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb03437def0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03437df80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb034386050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0343860e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb034386170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb034386200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb0343d32a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651735138.0747476, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMod75DjWS8IuiJu2c4XLm6zNo9NR0yOgAAgD8AAIA/o+WDPp8lszye4Do7bo2TOVWqQj7HxAc6AACAPwAAgD/g0GI+TElWPxrAg71Qxxq+JVqvPXr7Fb0AAAAAAAAAAJqDnb3B9pQ/XU3mvT0yXb7yWQa+8NpPPAAAAAAAAAAAANK5vMNVK7pyiIi7T1dZtrFVbrsbFqE6AACAPwAAgD/AeLU9SG+QuqzonzuAcPo1Hf4nuQV+uboAAIA/AACAPwDgfj0UEJS6zhFwuRU/+rNqVuc5JBOKOAAAgD8AAIA/+ooAvlLgsbkFLPo7K+IauR/OtrsuRwc6AACAPwAAgD8T7ZM+OOGQu+5HCTz7FgK5rwH1vONjfTYAAIA/AAAAAG2OGL6ez7U9vefvPCrqWr4iqZI9bnPDvAAAAAAAAAAA2nppvoVzubkJdMs6D/23NYKZULqtNey5AACAPwAAgD+iHaO+8sdxPys/aT23iFi+O0WmPIZ/Bz4AAAAAAAAAAM1Ybjz21AS6pc4ZuWTyU7U/o8y6/inINAAAgD8AAIA/GjCbPR+9vrlQlvm7q5GNtHqflDojO+wzAACAPwAAgD+NbaW9FCb0Oe75QjufZkm8cE9Ju8LsXr0AAAAAAAAAALpAVr5gANg+TlqTPRpSjb6PVhg+2PZ5PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMZV+wllvYUCUhpRSlIwBbJRN6AOMAXSUR0CFCX0p3HJcdX2UKGgGaAloD0MIrfwyGCPhUkCUhpRSlGgVTegDaBZHQIUlEnCwbER1fZQoaAZoCWgPQwiQEOULWm5cQJSGlFKUaBVN6ANoFkdAhSWY/NZ/1HV9lChoBmgJaA9DCHpU/N+RWGNAlIaUUpRoFU3oA2gWR0CFPUE2YOUddX2UKGgGaAloD0MITyFX6lkQ/7+UhpRSlGgVTUQCaBZHQIVAYQtjCpF1fZQoaAZoCWgPQwjNyYtMwGlgQJSGlFKUaBVN6ANoFkdAhUjPxpcopnV9lChoBmgJaA9DCI5XIHrSC2NAlIaUUpRoFU3oA2gWR0CFrq6BiCrcdX2UKGgGaAloD0MIE0NyMnEdYkCUhpRSlGgVTegDaBZHQIW4/r8iwB51fZQoaAZoCWgPQwg6IAn7djhiQJSGlFKUaBVN6ANoFkdAhb0pyyUs4HV9lChoBmgJaA9DCHxFt17Tw1hAlIaUUpRoFU3oA2gWR0CFvxVrhzeXdX2UKGgGaAloD0MIOwDirl7DXUCUhpRSlGgVTegDaBZHQIXFuy9mHxl1fZQoaAZoCWgPQwgu4jsx6xZXQJSGlFKUaBVN6ANoFkdAhdDOkLx7RnV9lChoBmgJaA9DCGLboswG5lhAlIaUUpRoFU3oA2gWR0CF17ObiIcjdX2UKGgGaAloD0MI73VSX5Z2YECUhpRSlGgVTegDaBZHQIXZK7Ciypt1fZQoaAZoCWgPQwiob5nTZdBhQJSGlFKUaBVN6ANoFkdAheCWV/tpmHV9lChoBmgJaA9DCN3T1R2LHltAlIaUUpRoFU3oA2gWR0CF5fOkcjqwdX2UKGgGaAloD0MIKeeLvZefZ0CUhpRSlGgVTegDaBZHQIXnDm0VrRB1fZQoaAZoCWgPQwgBbhYvFkBMQJSGlFKUaBVNjwFoFkdAhe8UuUUwjHV9lChoBmgJaA9DCDdwB+qUoUxAlIaUUpRoFU3oA2gWR0CGATjy4FzNdX2UKGgGaAloD0MIelT83xGeVkCUhpRSlGgVTegDaBZHQIYBt0eU6gd1fZQoaAZoCWgPQwiXb31Yb6QlQJSGlFKUaBVNMQFoFkdAhgx/sVtXP3V9lChoBmgJaA9DCBTtKqR8KWJAlIaUUpRoFU3oA2gWR0CGFuyvcJt0dX2UKGgGaAloD0MI63Hfap2YWkCUhpRSlGgVTegDaBZHQIYaEH+qBEt1fZQoaAZoCWgPQwhnRdREnxdhQJSGlFKUaBVN6ANoFkdAhiIZ5JK8MHV9lChoBmgJaA9DCACrI0c6w/k/lIaUUpRoFUvcaBZHQIYkn+MqBmR1fZQoaAZoCWgPQwgiqvBneElfQJSGlFKUaBVN6ANoFkdAhpEAH/tICnV9lChoBmgJaA9DCNqs+lxtc1xAlIaUUpRoFU3oA2gWR0CGlNESdvsJdX2UKGgGaAloD0MITP+SVKacWECUhpRSlGgVTegDaBZHQIaWsbedkJ91fZQoaAZoCWgPQwj+1HjpJhFYQJSGlFKUaBVN6ANoFkdAhp0j8DSw4nV9lChoBmgJaA9DCLh0zHnGCWJAlIaUUpRoFU3oA2gWR0CGqHIvrWy1dX2UKGgGaAloD0MIaLJ/noa1YkCUhpRSlGgVTegDaBZHQIavDCHh0hh1fZQoaAZoCWgPQwjNWDSdnYNaQJSGlFKUaBVN6ANoFkdAhrCINmUW23V9lChoBmgJaA9DCCm0rPvHQFtAlIaUUpRoFU3oA2gWR0CGvcI+nqFAdX2UKGgGaAloD0MIOh4zUBnZXkCUhpRSlGgVTegDaBZHQIa/AMOPNml1fZQoaAZoCWgPQwgRb51/u6wLQJSGlFKUaBVNCwFoFkdAhr9rv9cbBHV9lChoBmgJaA9DCFFqL6LtACLAlIaUUpRoFU0mAWgWR0CGwDk078vVdX2UKGgGaAloD0MIh4cwfhrRX0CUhpRSlGgVTegDaBZHQIbHkMiKR+11fZQoaAZoCWgPQwipFDsahwxXQJSGlFKUaBVN6ANoFkdAhtpVTrE9+3V9lChoBmgJaA9DCOJWQQx0+VVAlIaUUpRoFU3oA2gWR0CG5bytmthedX2UKGgGaAloD0MIuAN1yqNxWUCUhpRSlGgVTegDaBZHQIbwlJBgNPR1fZQoaAZoCWgPQwj93NCUncxfQJSGlFKUaBVN6ANoFkdAhvOtRWLgoHV9lChoBmgJaA9DCOqVsgxxe1xAlIaUUpRoFU3oA2gWR0CG+2J1JUYLdX2UKGgGaAloD0MIbyu9NhvuXECUhpRSlGgVTegDaBZHQIb94zabnYB1fZQoaAZoCWgPQwh8fEJ23oo+QJSGlFKUaBVNOgFoFkdAhwwcSPEKmnV9lChoBmgJaA9DCCttcY3PVlxAlIaUUpRoFU3oA2gWR0CHbGYTj/+9dX2UKGgGaAloD0MII2sNpXaxYkCUhpRSlGgVTegDaBZHQIdzokona391fZQoaAZoCWgPQwgm4NdIEpBdQJSGlFKUaBVN6ANoFkdAh3/rjHXEqHV9lChoBmgJaA9DCDj1geSdZF5AlIaUUpRoFU3oA2gWR0CHh+uwosqbdX2UKGgGaAloD0MIOkAwR4/bYECUhpRSlGgVTegDaBZHQIeJn6/IsAh1fZQoaAZoCWgPQwgp6PaSxqJbQJSGlFKUaBVN6ANoFkdAh5hTdDYywnV9lChoBmgJaA9DCJPi4xMyXWVAlIaUUpRoFU3oA2gWR0CHmatZFG5MdX2UKGgGaAloD0MIgzKNJhcZYECUhpRSlGgVTegDaBZHQIeaHuogmqp1fZQoaAZoCWgPQwgZA+s4fmlhQJSGlFKUaBVN6ANoFkdAh5sAVoHs1XV9lChoBmgJaA9DCBIR/kXQL1hAlIaUUpRoFU3oA2gWR0CHohfm9xp+dX2UKGgGaAloD0MIfuTWpNtaI8CUhpRSlGgVTUcBaBZHQIe36wW3z+Z1fZQoaAZoCWgPQwg0ZDxKJWRYQJSGlFKUaBVN6ANoFkdAh73jaPCEYnV9lChoBmgJaA9DCIMxIlFo8SzAlIaUUpRoFU1DAWgWR0CHx4jFAE+xdX2UKGgGaAloD0MI/gsEATK1YECUhpRSlGgVTegDaBZHQIfHjABT4tZ1fZQoaAZoCWgPQwg66X3ja8pXQJSGlFKUaBVN6ANoFkdAh8pJlrdnCnV9lChoBmgJaA9DCKN1VDVBVVhAlIaUUpRoFU3oA2gWR0CH0TAAQxvfdX2UKGgGaAloD0MIEFg5tMj0YkCUhpRSlGgVTegDaBZHQIfTg176YVt1fZQoaAZoCWgPQwj6YYTw6KBhQJSGlFKUaBVN6ANoFkdAh+GC+tbLU3V9lChoBmgJaA9DCB9pcFtb2CzAlIaUUpRoFUv5aBZHQIfrjnPmgap1fZQoaAZoCWgPQwi0PA/uzpY8wJSGlFKUaBVL12gWR0CH8Jyd4FA3dX2UKGgGaAloD0MIyqgyjLtDYUCUhpRSlGgVTegDaBZHQIg8lcW0qpd1fZQoaAZoCWgPQwg0SwLU1NZXQJSGlFKUaBVN6ANoFkdAiENTch1TznV9lChoBmgJaA9DCDOMu0G0IGJAlIaUUpRoFU3oA2gWR0CIT3dfsu3+dX2UKGgGaAloD0MIQwOxbOaQrD+UhpRSlGgVTRMBaBZHQIhUZk7Omix1fZQoaAZoCWgPQwgV/3dEhQVgQJSGlFKUaBVN6ANoFkdAiFicmShaknV9lChoBmgJaA9DCIVgVb38u15AlIaUUpRoFU3oA2gWR0CIaMtjkMkQdX2UKGgGaAloD0MIX7cIjHUvYUCUhpRSlGgVTegDaBZHQIhqot+TeO51fZQoaAZoCWgPQwgf9GxWfaBiQJSGlFKUaBVN6ANoFkdAiGu2qtHQQnV9lChoBmgJaA9DCJBq2O+JnSnAlIaUUpRoFUv5aBZHQIhvPWpZOi51fZQoaAZoCWgPQwifc7frJUlgQJSGlFKUaBVN6ANoFkdAiHNndXT3I3V9lChoBmgJaA9DCDYf14aKFUPAlIaUUpRoFU0uAWgWR0CIgLOVPepGdX2UKGgGaAloD0MI+8qD9JRTYUCUhpRSlGgVTegDaBZHQIiLJ9ZzPrx1fZQoaAZoCWgPQwgQ641aYbBYQJSGlFKUaBVN6ANoFkdAiJEcQZn+Q3V9lChoBmgJaA9DCCCcTx0r7GJAlIaUUpRoFU3oA2gWR0CImtT5wfhddX2UKGgGaAloD0MISghW1cs7YUCUhpRSlGgVTegDaBZHQIid2ANG3F11fZQoaAZoCWgPQwjU1R2LbZpgQJSGlFKUaBVN6ANoFkdAiKdIKMNtqHV9lChoBmgJaA9DCHCyDdwBW2JAlIaUUpRoFU3oA2gWR0CItz6fra/RdX2UKGgGaAloD0MI9+rjoe+QVUCUhpRSlGgVTegDaBZHQIjCcfxMFll1fZQoaAZoCWgPQwiOdtzwuzdiQJSGlFKUaBVN6ANoFkdAiRWSMcZLqXV9lChoBmgJaA9DCCSdgZGXLFhAlIaUUpRoFU3oA2gWR0CJLaTfR/mUdX2UKGgGaAloD0MIuTMTDOduYkCUhpRSlGgVTegDaBZHQIkyEvboKUp1fZQoaAZoCWgPQwg/UkSGVe1bQJSGlFKUaBVN6ANoFkdAiUFIoNNJv3V9lChoBmgJaA9DCIsYdhiTj1tAlIaUUpRoFU3oA2gWR0CJQw6vq1PWdX2UKGgGaAloD0MIkuo7vyj0XECUhpRSlGgVTegDaBZHQIlECGDcuap1fZQoaAZoCWgPQwgfMA+Z8pJfQJSGlFKUaBVN6ANoFkdAiUeOZ9d/rnV9lChoBmgJaA9DCN/7G7TX8WBAlIaUUpRoFU3oA2gWR0CJS5fR/mT1dX2UKGgGaAloD0MIr5gR3p4RYUCUhpRSlGgVTegDaBZHQIlYwRf4REp1fZQoaAZoCWgPQwiK5ZZWw6hhQJSGlFKUaBVN6ANoFkdAiWMa7/XGwXV9lChoBmgJaA9DCFJDG4ANt1pAlIaUUpRoFU3oA2gWR0CJaVQsPJ7tdX2UKGgGaAloD0MIjj9R2TA+YUCUhpRSlGgVTegDaBZHQIlzM6V+qip1fZQoaAZoCWgPQwh3hxQDJBhbQJSGlFKUaBVN6ANoFkdAiXYpBw++unV9lChoBmgJaA9DCJP+XgqPSWJAlIaUUpRoFU3oA2gWR0CJgAnwXqJNdX2UKGgGaAloD0MIB0FHq1p2YECUhpRSlGgVTegDaBZHQImQFCw8nu11fZQoaAZoCWgPQwjp8BDGT886wJSGlFKUaBVNNQFoFkdAiZt0cOskp3V9lChoBmgJaA9DCPVJ7rCJ9WNAlIaUUpRoFU3oA2gWR0CJnARwqAjIdX2UKGgGaAloD0MIOsssQrGvQMCUhpRSlGgVTToBaBZHQImpoQvpQk51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar-test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03e47aae19e4aeff4b00580c4b83587f3c25df6b16a6ad775350369de24ba307
|
3 |
+
size 144044
|
lunar-test/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar-test/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03437dc20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03437dcb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03437dd40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03437ddd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb03437de60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb03437def0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03437df80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb034386050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0343860e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb034386170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb034386200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb0343d32a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651735138.0747476,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMod75DjWS8IuiJu2c4XLm6zNo9NR0yOgAAgD8AAIA/o+WDPp8lszye4Do7bo2TOVWqQj7HxAc6AACAPwAAgD/g0GI+TElWPxrAg71Qxxq+JVqvPXr7Fb0AAAAAAAAAAJqDnb3B9pQ/XU3mvT0yXb7yWQa+8NpPPAAAAAAAAAAAANK5vMNVK7pyiIi7T1dZtrFVbrsbFqE6AACAPwAAgD/AeLU9SG+QuqzonzuAcPo1Hf4nuQV+uboAAIA/AACAPwDgfj0UEJS6zhFwuRU/+rNqVuc5JBOKOAAAgD8AAIA/+ooAvlLgsbkFLPo7K+IauR/OtrsuRwc6AACAPwAAgD8T7ZM+OOGQu+5HCTz7FgK5rwH1vONjfTYAAIA/AAAAAG2OGL6ez7U9vefvPCrqWr4iqZI9bnPDvAAAAAAAAAAA2nppvoVzubkJdMs6D/23NYKZULqtNey5AACAPwAAgD+iHaO+8sdxPys/aT23iFi+O0WmPIZ/Bz4AAAAAAAAAAM1Ybjz21AS6pc4ZuWTyU7U/o8y6/inINAAAgD8AAIA/GjCbPR+9vrlQlvm7q5GNtHqflDojO+wzAACAPwAAgD+NbaW9FCb0Oe75QjufZkm8cE9Ju8LsXr0AAAAAAAAAALpAVr5gANg+TlqTPRpSjb6PVhg+2PZ5PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMZV+wllvYUCUhpRSlIwBbJRN6AOMAXSUR0CFCX0p3HJcdX2UKGgGaAloD0MIrfwyGCPhUkCUhpRSlGgVTegDaBZHQIUlEnCwbER1fZQoaAZoCWgPQwiQEOULWm5cQJSGlFKUaBVN6ANoFkdAhSWY/NZ/1HV9lChoBmgJaA9DCHpU/N+RWGNAlIaUUpRoFU3oA2gWR0CFPUE2YOUddX2UKGgGaAloD0MITyFX6lkQ/7+UhpRSlGgVTUQCaBZHQIVAYQtjCpF1fZQoaAZoCWgPQwjNyYtMwGlgQJSGlFKUaBVN6ANoFkdAhUjPxpcopnV9lChoBmgJaA9DCI5XIHrSC2NAlIaUUpRoFU3oA2gWR0CFrq6BiCrcdX2UKGgGaAloD0MIE0NyMnEdYkCUhpRSlGgVTegDaBZHQIW4/r8iwB51fZQoaAZoCWgPQwg6IAn7djhiQJSGlFKUaBVN6ANoFkdAhb0pyyUs4HV9lChoBmgJaA9DCHxFt17Tw1hAlIaUUpRoFU3oA2gWR0CFvxVrhzeXdX2UKGgGaAloD0MIOwDirl7DXUCUhpRSlGgVTegDaBZHQIXFuy9mHxl1fZQoaAZoCWgPQwgu4jsx6xZXQJSGlFKUaBVN6ANoFkdAhdDOkLx7RnV9lChoBmgJaA9DCGLboswG5lhAlIaUUpRoFU3oA2gWR0CF17ObiIcjdX2UKGgGaAloD0MI73VSX5Z2YECUhpRSlGgVTegDaBZHQIXZK7Ciypt1fZQoaAZoCWgPQwiob5nTZdBhQJSGlFKUaBVN6ANoFkdAheCWV/tpmHV9lChoBmgJaA9DCN3T1R2LHltAlIaUUpRoFU3oA2gWR0CF5fOkcjqwdX2UKGgGaAloD0MIKeeLvZefZ0CUhpRSlGgVTegDaBZHQIXnDm0VrRB1fZQoaAZoCWgPQwgBbhYvFkBMQJSGlFKUaBVNjwFoFkdAhe8UuUUwjHV9lChoBmgJaA9DCDdwB+qUoUxAlIaUUpRoFU3oA2gWR0CGATjy4FzNdX2UKGgGaAloD0MIelT83xGeVkCUhpRSlGgVTegDaBZHQIYBt0eU6gd1fZQoaAZoCWgPQwiXb31Yb6QlQJSGlFKUaBVNMQFoFkdAhgx/sVtXP3V9lChoBmgJaA9DCBTtKqR8KWJAlIaUUpRoFU3oA2gWR0CGFuyvcJt0dX2UKGgGaAloD0MI63Hfap2YWkCUhpRSlGgVTegDaBZHQIYaEH+qBEt1fZQoaAZoCWgPQwhnRdREnxdhQJSGlFKUaBVN6ANoFkdAhiIZ5JK8MHV9lChoBmgJaA9DCACrI0c6w/k/lIaUUpRoFUvcaBZHQIYkn+MqBmR1fZQoaAZoCWgPQwgiqvBneElfQJSGlFKUaBVN6ANoFkdAhpEAH/tICnV9lChoBmgJaA9DCNqs+lxtc1xAlIaUUpRoFU3oA2gWR0CGlNESdvsJdX2UKGgGaAloD0MITP+SVKacWECUhpRSlGgVTegDaBZHQIaWsbedkJ91fZQoaAZoCWgPQwj+1HjpJhFYQJSGlFKUaBVN6ANoFkdAhp0j8DSw4nV9lChoBmgJaA9DCLh0zHnGCWJAlIaUUpRoFU3oA2gWR0CGqHIvrWy1dX2UKGgGaAloD0MIaLJ/noa1YkCUhpRSlGgVTegDaBZHQIavDCHh0hh1fZQoaAZoCWgPQwjNWDSdnYNaQJSGlFKUaBVN6ANoFkdAhrCINmUW23V9lChoBmgJaA9DCCm0rPvHQFtAlIaUUpRoFU3oA2gWR0CGvcI+nqFAdX2UKGgGaAloD0MIOh4zUBnZXkCUhpRSlGgVTegDaBZHQIa/AMOPNml1fZQoaAZoCWgPQwgRb51/u6wLQJSGlFKUaBVNCwFoFkdAhr9rv9cbBHV9lChoBmgJaA9DCFFqL6LtACLAlIaUUpRoFU0mAWgWR0CGwDk078vVdX2UKGgGaAloD0MIh4cwfhrRX0CUhpRSlGgVTegDaBZHQIbHkMiKR+11fZQoaAZoCWgPQwipFDsahwxXQJSGlFKUaBVN6ANoFkdAhtpVTrE9+3V9lChoBmgJaA9DCOJWQQx0+VVAlIaUUpRoFU3oA2gWR0CG5bytmthedX2UKGgGaAloD0MIuAN1yqNxWUCUhpRSlGgVTegDaBZHQIbwlJBgNPR1fZQoaAZoCWgPQwj93NCUncxfQJSGlFKUaBVN6ANoFkdAhvOtRWLgoHV9lChoBmgJaA9DCOqVsgxxe1xAlIaUUpRoFU3oA2gWR0CG+2J1JUYLdX2UKGgGaAloD0MIbyu9NhvuXECUhpRSlGgVTegDaBZHQIb94zabnYB1fZQoaAZoCWgPQwh8fEJ23oo+QJSGlFKUaBVNOgFoFkdAhwwcSPEKmnV9lChoBmgJaA9DCCttcY3PVlxAlIaUUpRoFU3oA2gWR0CHbGYTj/+9dX2UKGgGaAloD0MII2sNpXaxYkCUhpRSlGgVTegDaBZHQIdzokona391fZQoaAZoCWgPQwgm4NdIEpBdQJSGlFKUaBVN6ANoFkdAh3/rjHXEqHV9lChoBmgJaA9DCDj1geSdZF5AlIaUUpRoFU3oA2gWR0CHh+uwosqbdX2UKGgGaAloD0MIOkAwR4/bYECUhpRSlGgVTegDaBZHQIeJn6/IsAh1fZQoaAZoCWgPQwgp6PaSxqJbQJSGlFKUaBVN6ANoFkdAh5hTdDYywnV9lChoBmgJaA9DCJPi4xMyXWVAlIaUUpRoFU3oA2gWR0CHmatZFG5MdX2UKGgGaAloD0MIgzKNJhcZYECUhpRSlGgVTegDaBZHQIeaHuogmqp1fZQoaAZoCWgPQwgZA+s4fmlhQJSGlFKUaBVN6ANoFkdAh5sAVoHs1XV9lChoBmgJaA9DCBIR/kXQL1hAlIaUUpRoFU3oA2gWR0CHohfm9xp+dX2UKGgGaAloD0MIfuTWpNtaI8CUhpRSlGgVTUcBaBZHQIe36wW3z+Z1fZQoaAZoCWgPQwg0ZDxKJWRYQJSGlFKUaBVN6ANoFkdAh73jaPCEYnV9lChoBmgJaA9DCIMxIlFo8SzAlIaUUpRoFU1DAWgWR0CHx4jFAE+xdX2UKGgGaAloD0MI/gsEATK1YECUhpRSlGgVTegDaBZHQIfHjABT4tZ1fZQoaAZoCWgPQwg66X3ja8pXQJSGlFKUaBVN6ANoFkdAh8pJlrdnCnV9lChoBmgJaA9DCKN1VDVBVVhAlIaUUpRoFU3oA2gWR0CH0TAAQxvfdX2UKGgGaAloD0MIEFg5tMj0YkCUhpRSlGgVTegDaBZHQIfTg176YVt1fZQoaAZoCWgPQwj6YYTw6KBhQJSGlFKUaBVN6ANoFkdAh+GC+tbLU3V9lChoBmgJaA9DCB9pcFtb2CzAlIaUUpRoFUv5aBZHQIfrjnPmgap1fZQoaAZoCWgPQwi0PA/uzpY8wJSGlFKUaBVL12gWR0CH8Jyd4FA3dX2UKGgGaAloD0MIyqgyjLtDYUCUhpRSlGgVTegDaBZHQIg8lcW0qpd1fZQoaAZoCWgPQwg0SwLU1NZXQJSGlFKUaBVN6ANoFkdAiENTch1TznV9lChoBmgJaA9DCDOMu0G0IGJAlIaUUpRoFU3oA2gWR0CIT3dfsu3+dX2UKGgGaAloD0MIQwOxbOaQrD+UhpRSlGgVTRMBaBZHQIhUZk7Omix1fZQoaAZoCWgPQwgV/3dEhQVgQJSGlFKUaBVN6ANoFkdAiFicmShaknV9lChoBmgJaA9DCIVgVb38u15AlIaUUpRoFU3oA2gWR0CIaMtjkMkQdX2UKGgGaAloD0MIX7cIjHUvYUCUhpRSlGgVTegDaBZHQIhqot+TeO51fZQoaAZoCWgPQwgf9GxWfaBiQJSGlFKUaBVN6ANoFkdAiGu2qtHQQnV9lChoBmgJaA9DCJBq2O+JnSnAlIaUUpRoFUv5aBZHQIhvPWpZOi51fZQoaAZoCWgPQwifc7frJUlgQJSGlFKUaBVN6ANoFkdAiHNndXT3I3V9lChoBmgJaA9DCDYf14aKFUPAlIaUUpRoFU0uAWgWR0CIgLOVPepGdX2UKGgGaAloD0MI+8qD9JRTYUCUhpRSlGgVTegDaBZHQIiLJ9ZzPrx1fZQoaAZoCWgPQwgQ641aYbBYQJSGlFKUaBVN6ANoFkdAiJEcQZn+Q3V9lChoBmgJaA9DCCCcTx0r7GJAlIaUUpRoFU3oA2gWR0CImtT5wfhddX2UKGgGaAloD0MISghW1cs7YUCUhpRSlGgVTegDaBZHQIid2ANG3F11fZQoaAZoCWgPQwjU1R2LbZpgQJSGlFKUaBVN6ANoFkdAiKdIKMNtqHV9lChoBmgJaA9DCHCyDdwBW2JAlIaUUpRoFU3oA2gWR0CItz6fra/RdX2UKGgGaAloD0MI9+rjoe+QVUCUhpRSlGgVTegDaBZHQIjCcfxMFll1fZQoaAZoCWgPQwiOdtzwuzdiQJSGlFKUaBVN6ANoFkdAiRWSMcZLqXV9lChoBmgJaA9DCCSdgZGXLFhAlIaUUpRoFU3oA2gWR0CJLaTfR/mUdX2UKGgGaAloD0MIuTMTDOduYkCUhpRSlGgVTegDaBZHQIkyEvboKUp1fZQoaAZoCWgPQwg/UkSGVe1bQJSGlFKUaBVN6ANoFkdAiUFIoNNJv3V9lChoBmgJaA9DCIsYdhiTj1tAlIaUUpRoFU3oA2gWR0CJQw6vq1PWdX2UKGgGaAloD0MIkuo7vyj0XECUhpRSlGgVTegDaBZHQIlECGDcuap1fZQoaAZoCWgPQwgfMA+Z8pJfQJSGlFKUaBVN6ANoFkdAiUeOZ9d/rnV9lChoBmgJaA9DCN/7G7TX8WBAlIaUUpRoFU3oA2gWR0CJS5fR/mT1dX2UKGgGaAloD0MIr5gR3p4RYUCUhpRSlGgVTegDaBZHQIlYwRf4REp1fZQoaAZoCWgPQwiK5ZZWw6hhQJSGlFKUaBVN6ANoFkdAiWMa7/XGwXV9lChoBmgJaA9DCFJDG4ANt1pAlIaUUpRoFU3oA2gWR0CJaVQsPJ7tdX2UKGgGaAloD0MIjj9R2TA+YUCUhpRSlGgVTegDaBZHQIlzM6V+qip1fZQoaAZoCWgPQwh3hxQDJBhbQJSGlFKUaBVN6ANoFkdAiXYpBw++unV9lChoBmgJaA9DCJP+XgqPSWJAlIaUUpRoFU3oA2gWR0CJgAnwXqJNdX2UKGgGaAloD0MIB0FHq1p2YECUhpRSlGgVTegDaBZHQImQFCw8nu11fZQoaAZoCWgPQwjp8BDGT886wJSGlFKUaBVNNQFoFkdAiZt0cOskp3V9lChoBmgJaA9DCPVJ7rCJ9WNAlIaUUpRoFU3oA2gWR0CJnARwqAjIdX2UKGgGaAloD0MIOsssQrGvQMCUhpRSlGgVTToBaBZHQImpoQvpQk51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar-test/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5171fae3f7883e506712a1f91c371cca9b1c56e9c58a72b2c70603ff003fbc4
|
3 |
+
size 84829
|
lunar-test/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6443744617911dbf4c7d7cae0d093d15fb7aa60411675df483581c3eb0f52f95
|
3 |
+
size 43201
|
lunar-test/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar-test/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abc6cb5b86841e12f875ef8baa568be9f4e8c7cf26958dba0c849845c755fca4
|
3 |
+
size 256007
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 151.63742544569385, "std_reward": 38.53156240204188, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T07:34:44.753800"}
|