Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- ar
|
| 4 |
+
- fr
|
| 5 |
+
license: mit
|
| 6 |
+
pipeline_tag: text-classification
|
| 7 |
+
tags:
|
| 8 |
+
- misinformation-detection
|
| 9 |
+
- fake-news
|
| 10 |
+
- text-classification
|
| 11 |
+
- algerian-darija
|
| 12 |
+
- arabic
|
| 13 |
+
- mbert
|
| 14 |
+
model_name: mBERT-Algerian-Darija
|
| 15 |
+
base_model: bert-base-multilingual-cased
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# mBERT — Algerian Darija Misinformation Detection
|
| 19 |
+
|
| 20 |
+
Fine-tuned **BERT-base-multilingual-cased** for detecting misinformation in **Algerian Darija** text.
|
| 21 |
+
|
| 22 |
+
- **Base model**: `bert-base-multilingual-cased` (170M parameters)
|
| 23 |
+
- **Task**: Multi-class text classification (5 classes)
|
| 24 |
+
- **Classes**: F (Factual), R (Reporting), N (Non-factual), M (Misleading), S (Satire)
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
## Performance (Test set: 3,344 samples)
|
| 29 |
+
|
| 30 |
+
- **Accuracy**: 75.42%
|
| 31 |
+
- **Macro F1**: 64.48%
|
| 32 |
+
- **Weighted F1**: 75.70%
|
| 33 |
+
|
| 34 |
+
**Per-class F1**:
|
| 35 |
+
- Factual (F): 83.72%
|
| 36 |
+
- Reporting (R): 76.35%
|
| 37 |
+
- Non-factual (N): 81.01%
|
| 38 |
+
- Misleading (M): 61.46%
|
| 39 |
+
- Satire (S): 19.86%
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
## Training Summary
|
| 45 |
+
|
| 46 |
+
- **Max sequence length**: 128
|
| 47 |
+
- **Epochs**: 3 (early stopping)
|
| 48 |
+
- **Batch size**: 16
|
| 49 |
+
- **Learning rate**: 2e-5
|
| 50 |
+
- **Loss**: Weighted CrossEntropy
|
| 51 |
+
- **Seed**: 42 (reproducibility)
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
## Usage
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
import torch
|
| 59 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 60 |
+
|
| 61 |
+
MODEL_ID = "Rahilgh/model4_1"
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 63 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
|
| 64 |
+
|
| 65 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 66 |
+
model.to(device).eval()
|
| 67 |
+
|
| 68 |
+
LABEL_MAP = {0: "F", 1: "R", 2: "N", 3: "M", 4: "S"}
|
| 69 |
+
LABEL_NAMES = {
|
| 70 |
+
"F": "Factual",
|
| 71 |
+
"R": "Reporting",
|
| 72 |
+
"N": "Non-factual",
|
| 73 |
+
"M": "Misleading",
|
| 74 |
+
"S": "Satire"
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
texts = [
|
| 78 |
+
"قالك بلي رايحين ينحو الباك هذا العام",
|
| 79 |
+
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
for text in texts:
|
| 83 |
+
inputs = tokenizer(
|
| 84 |
+
text,
|
| 85 |
+
return_tensors="pt",
|
| 86 |
+
max_length=128,
|
| 87 |
+
truncation=True,
|
| 88 |
+
padding=True,
|
| 89 |
+
).to(device)
|
| 90 |
+
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
outputs = model(**inputs)
|
| 93 |
+
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 94 |
+
pred_id = probs.argmax().item()
|
| 95 |
+
confidence = probs[pred_id].item()
|
| 96 |
+
|
| 97 |
+
label = LABEL_MAP[pred_id]
|
| 98 |
+
print(f"Text: {text}")
|
| 99 |
+
print(f"Prediction: {LABEL_NAMES[label]} ({label}) — {confidence:.2%}\n")
|