Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1426.01 +/- 139.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cda8b4296323ebe38f9619483932a449b6c8a9e93d0db2024494b5132c9dee23
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c33b2dab0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c33b2db40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c33b2dbd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c33b2dc60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2c33b2dcf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2c33b2dd80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2c33b2de10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c33b2dea0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2c33b2df30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c33b2dfc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c33b2e050>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c33b2e0e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2c33b22180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1682845537608969277,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADsEhL6qrzk/b1w2vhYXGb9tdFA/vIWyPjv9mD4gSyI+UfhlP7xAEr9m3GI/gxq+v6vPxb+KyAg//pyAv6ZJDr8avhg/24O5PuORBD+zQ6Y8cEU5v9+/mL6xFki/OSgxvqftO7/U6Co/ArvGPo5TJT/nM4S+480uPabiAT/RFkA+ODrKPwFbPj9voLE+pfwlPwi+2z+Q5ZG7I3CuP3bn8j6RZVm/l+/WP9Pjh788Bbm/qdArPWnpe75pNKm9xAXkvhAzYz/DQka/YBm5vkdz4T5GXa4/Krq/vwK7xj6OUyU/w+kbvrQMpD963znAn8eCvvArJz08B8m/EM66Pnk+Pz83LOu+Hhiyv2QD2T7mZt4/rKg1v7R4PMAJn4e/UhbOPnctob+KEBu+ga2Av3gyw7+9BJW/ZGT3vt8jjr/nr669p+07vyq6v78Cu8Y+jlMlP6lsF75It6o/fwEJwBO+2r5i9lI/kWutP37qdz9MkQE+JpIYP7U4H70ds6c/XLxhv4Y7vz7GKbg/1lmBvyY2fr68Ho2+QafaPhPECz8Dhyk+qTR6P6gxob5S6Q89tbBJvaftO7/U6Co/ArvGPo5TJT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAlMrq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3oUNPgAAAAC8jN6/AAAAAC8xXb0AAAAAlOLoPwAAAAAciTA8AAAAAPvG5T8AAAAAu/KDPQAAAACRx++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFiyNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJ3gzoAAAAAK37ivwAAAABT2wo+AAAAAKpw/z8AAAAAhoMivQAAAACJ5No/AAAAAP2OLD0AAAAAF3fevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPO5MTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAp+/K9AAAAAB3S2r8AAAAAxB4WPQAAAAD0VfA/AAAAAA+QJb0AAAAA/YP2PwAAAAAiarY9AAAAABHV4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwNM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5YqmPAAAAAAmlPm/AAAAAIg2BT4AAAAA8jv5PwAAAAA7Y/89AAAAAEnW4j8AAAAAQKQXvQAAAABzIPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxRm11GLDSMAWyUTegDjAF0lEdAqWKBqfvnbXV9lChoBkdAm58X1anrIGgHTegDaAhHQKlkqp9ZzPt1fZQoaAZHQKAOgIEbHZNoB03oA2gIR0Cpa4pyQxN7dX2UKGgGR0CcacHI6r/9aAdN6ANoCEdAqWwe6Zpi7XV9lChoBkdAoEMI5aNdaGgHTegDaAhHQKlv/90ihWZ1fZQoaAZHQJ532XyAhB9oB03oA2gIR0CpciTO5avBdX2UKGgGR0CcfUxwyZa3aAdN6ANoCEdAqXkH5+H8CXV9lChoBkdAmpBZX+2mYWgHTegDaAhHQKl5oETQE6l1fZQoaAZHQJnFhC+lCTloB03oA2gIR0CpfYDQiRnwdX2UKGgGR0CYjo+nqFAWaAdN6ANoCEdAqX+m76Hj63V9lChoBkdAmc4hVAAyVWgHTegDaAhHQKmGjewcHW11fZQoaAZHQJiE23solUpoB03oA2gIR0Cphx3ueBhAdX2UKGgGR0CVKWtz0Yj0aAdN6ANoCEdAqYr3x+az/3V9lChoBkdAmENno5ggHWgHTegDaAhHQKmNH9zfaYh1fZQoaAZHQJbvGGN70FtoB03oA2gIR0Cpk/+bExZddX2UKGgGR0CWb3NZvDP4aAdN6ANoCEdAqZSRTOxB3XV9lChoBkdAl5AfpljEvWgHTegDaAhHQKmYcnivPkd1fZQoaAZHQJV6VNvfj0doB03oA2gIR0CpmqPSMLncdX2UKGgGR0CZqjVqesgdaAdN6ANoCEdAqaGMnssxwnV9lChoBkdAmkXoqkM1CWgHTegDaAhHQKmiH9QXQ+l1fZQoaAZHQJa+GhrWRRxoB03oA2gIR0CppfWH+IdmdX2UKGgGR0CXek+tKZlWaAdN6ANoCEdAqagi//NqxnV9lChoBkdAn0WNL+PzWmgHTegDaAhHQKmvCIP9UCJ1fZQoaAZHQJy1EpjMFEBoB03oA2gIR0Cpr50Nz8xcdX2UKGgGR0CdtEb7j1f3aAdN6ANoCEdAqbNygkC3gHV9lChoBkdAm5TzasZHeGgHTegDaAhHQKm1oHYYixF1fZQoaAZHQJx6N8CxNZhoB03oA2gIR0CpvJAs052hdX2UKGgGR0Cf43DvmYBvaAdN6ANoCEdAqb0kORT0hHV9lChoBkdAnsiSkGiYcGgHTegDaAhHQKnA9jJ+2E11fZQoaAZHQJ+QFhfBvaVoB03oA2gIR0CpwyLKvFFVdX2UKGgGR0CcfW8RtgrpaAdN6ANoCEdAqcoMHv+fiHV9lChoBkdAnjXkDIRywWgHTegDaAhHQKnKnQvYe1d1fZQoaAZHQJ/ryJoCdSVoB03oA2gIR0Cpzmtn5BTodX2UKGgGR0CfMksySFGoaAdN6ANoCEdAqdCX7Lt/nXV9lChoBkdAnb2Qb+98JGgHTegDaAhHQKnXqeMAFPl1fZQoaAZHQJ+fIV58jRloB03oA2gIR0Cp2EN6w+t9dX2UKGgGR0CcePPMSsbOaAdN6ANoCEdAqdwhybQTmHV9lChoBkdAoF7gF3Y+S2gHTegDaAhHQKneUBWgezV1fZQoaAZHQJ70VGus90RoB03oA2gIR0Cp5S+xwAEMdX2UKGgGR0CZc5eVs1sMaAdN6ANoCEdAqeXD74zrNXV9lChoBkdAnKw6HKwIMWgHTegDaAhHQKnpm4lyBCl1fZQoaAZHQJ0N0xXXAdpoB03oA2gIR0Cp69FwT/Q0dX2UKGgGR0CgRUlBppN9aAdN6ANoCEdAqfK9gUlAvHV9lChoBkdAoBZfmA9V3mgHTegDaAhHQKnzXk6Lfk51fZQoaAZHQJ/fU9s7+1loB03oA2gIR0Cp9zpb2USqdX2UKGgGR0Cgaoll9SdfaAdN6ANoCEdAqfllNzr/sHV9lChoBkdAnw9Ecjqv/2gHTegDaAhHQKoAPaTwDvF1fZQoaAZHQJ4yXtLL6k9oB03oA2gIR0CqAM894eLfdX2UKGgGR0CexemXPZ7HaAdN6ANoCEdAqgShRGc4HXV9lChoBkdAn5LVARkEtGgHTegDaAhHQKoGxs7dSEV1fZQoaAZHQKCRZHbypaRoB03oA2gIR0CqDaj7ZWaMdX2UKGgGR0CgRyCiyprDaAdN6ANoCEdAqg47TUiIL3V9lChoBkdAoDi+2d/ax2gHTegDaAhHQKoSEHSnccl1fZQoaAZHQKETCyzHCGhoB03oA2gIR0CqFDcIqsltdX2UKGgGR0ChMo0h3aBaaAdN6ANoCEdAqhsLGcWj5HV9lChoBkdAoR2NEiMYM2gHTegDaAhHQKobnSwW30B1fZQoaAZHQKHO5Lg4wRJoB03oA2gIR0CqH3HPE87qdX2UKGgGR0ChYLCMHbAUaAdN6ANoCEdAqiGcL4N7SnV9lChoBkdAn4tDURWcSWgHTegDaAhHQKooegSvkil1fZQoaAZHQKCGyj4YaYNoB03oA2gIR0CqKQywwCbMdX2UKGgGR0CgBImsV+I/aAdN6ANoCEdAqizyASWZ7XV9lChoBkdAmuAYkJKJ22gHTegDaAhHQKovF7gsK9h1fZQoaAZHQKAoj7HhjvxoB03oA2gIR0CqNfg0j1PFdX2UKGgGR0CgOVHck+otaAdN6ANoCEdAqjaOJxeb/nV9lChoBkdAnjVI8+zMR2gHTegDaAhHQKo6ZcD8tPJ1fZQoaAZHQJ+84fwI+ntoB03oA2gIR0CqPJubRWtEdX2UKGgGR0Ces9ycCo0iaAdN6ANoCEdAqkOEU0vXb3V9lChoBkdAoC+qaZx7zGgHTegDaAhHQKpEFSmZVn51fZQoaAZHQJ+a5GwzLwFoB03oA2gIR0CqR++HaewtdX2UKGgGR0Cf/TC04R29aAdN6ANoCEdAqkoWzjWCmXV9lChoBkdAoL7gJu2qk2gHTegDaAhHQKpQ5fcer+51fZQoaAZHQKBmIigTRIBoB03oA2gIR0CqUXswL3K0dX2UKGgGR0CgMIQXyiEhaAdN6ANoCEdAqlVPL9uP3nV9lChoBkdAoFJkRBeHBWgHTegDaAhHQKpXdAhStNl1fZQoaAZHQKA2xyZrpJRoB03oA2gIR0CqXlhBAv+PdX2UKGgGR0CfNcRU3n6maAdN6ANoCEdAql7p26kIonV9lChoBkdAn1OXLaEi+2gHTegDaAhHQKpixTlT3qR1fZQoaAZHQKBvi5NGmUJoB03oA2gIR0CqZOyqU/wBdX2UKGgGR0Cg3WT7uUliaAdN6ANoCEdAqmvFbX6InHV9lChoBkdAoWYQzabnYGgHTegDaAhHQKpsXuxbB451fZQoaAZHQKBSOUUO/cpoB03oA2gIR0CqcCuy3Td+dX2UKGgGR0ChZZT5XU6QaAdN6ANoCEdAqnJWXu3MIXV9lChoBkdAoQZ3o3aSLmgHTegDaAhHQKp5KiCaqjt1fZQoaAZHQKEEOQbuMMtoB03oA2gIR0CqecWtEG7jdX2UKGgGR0ChuC4xL0z1aAdN6ANoCEdAqn2qr3j+73V9lChoBkdAoWhlsWO6umgHTegDaAhHQKp/zfdhy811fZQoaAZHQKDGuaDPGAFoB03oA2gIR0CqhqHoPkJbdX2UKGgGR0CgDTCJfpljaAdN6ANoCEdAqoczSLIgeXV9lChoBkdAnaYWlANXo2gHTegDaAhHQKqLDEiMYMx1fZQoaAZHQJ8+P30wrUdoB03oA2gIR0CqjTIWxhUjdX2UKGgGR0CgDgOC5EtvaAdN6ANoCEdAqpQGsT37DXV9lChoBkdAn9n2kWRA8mgHTegDaAhHQKqUmeDnNgV1fZQoaAZHQJ5jVcpsoDxoB03oA2gIR0CqmHlQdjoZdX2UKGgGR0Cdm2bbUPQOaAdN6ANoCEdAqpqh1ie/YnV9lChoBkdAl+AUahpQDWgHTegDaAhHQKqhkwjdHlR1fZQoaAZHQJry5EroW59oB03oA2gIR0CqoiZ6MR6GdX2UKGgGR0CYAVGdI5HVaAdN6ANoCEdAqqX+Q+2VmnV9lChoBkdAk7J3WJ79h2gHTegDaAhHQKqoKMm4RVZ1fZQoaAZHQJVBTkCFK05oB03oA2gIR0CqrwAiV0LddX2UKGgGR0CXcvV3ljmTaAdN6ANoCEdAqq+ThtLteHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72d1141f7107a56187ef01cb93293eaf54bfffe6043bd478efb3cf6b4d23b747
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cc549596381cac8bc6ad12ae5139f3d012d825b7deaa138ae634082d9c62c53
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c33b2dab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c33b2db40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c33b2dbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c33b2dc60>", "_build": "<function ActorCriticPolicy._build at 0x7f2c33b2dcf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2c33b2dd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2c33b2de10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c33b2dea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2c33b2df30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c33b2dfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c33b2e050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c33b2e0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c33b22180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682845537608969277, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADsEhL6qrzk/b1w2vhYXGb9tdFA/vIWyPjv9mD4gSyI+UfhlP7xAEr9m3GI/gxq+v6vPxb+KyAg//pyAv6ZJDr8avhg/24O5PuORBD+zQ6Y8cEU5v9+/mL6xFki/OSgxvqftO7/U6Co/ArvGPo5TJT/nM4S+480uPabiAT/RFkA+ODrKPwFbPj9voLE+pfwlPwi+2z+Q5ZG7I3CuP3bn8j6RZVm/l+/WP9Pjh788Bbm/qdArPWnpe75pNKm9xAXkvhAzYz/DQka/YBm5vkdz4T5GXa4/Krq/vwK7xj6OUyU/w+kbvrQMpD963znAn8eCvvArJz08B8m/EM66Pnk+Pz83LOu+Hhiyv2QD2T7mZt4/rKg1v7R4PMAJn4e/UhbOPnctob+KEBu+ga2Av3gyw7+9BJW/ZGT3vt8jjr/nr669p+07vyq6v78Cu8Y+jlMlP6lsF75It6o/fwEJwBO+2r5i9lI/kWutP37qdz9MkQE+JpIYP7U4H70ds6c/XLxhv4Y7vz7GKbg/1lmBvyY2fr68Ho2+QafaPhPECz8Dhyk+qTR6P6gxob5S6Q89tbBJvaftO7/U6Co/ArvGPo5TJT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAlMrq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3oUNPgAAAAC8jN6/AAAAAC8xXb0AAAAAlOLoPwAAAAAciTA8AAAAAPvG5T8AAAAAu/KDPQAAAACRx++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFiyNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJ3gzoAAAAAK37ivwAAAABT2wo+AAAAAKpw/z8AAAAAhoMivQAAAACJ5No/AAAAAP2OLD0AAAAAF3fevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPO5MTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAp+/K9AAAAAB3S2r8AAAAAxB4WPQAAAAD0VfA/AAAAAA+QJb0AAAAA/YP2PwAAAAAiarY9AAAAABHV4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwNM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5YqmPAAAAAAmlPm/AAAAAIg2BT4AAAAA8jv5PwAAAAA7Y/89AAAAAEnW4j8AAAAAQKQXvQAAAABzIPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxRm11GLDSMAWyUTegDjAF0lEdAqWKBqfvnbXV9lChoBkdAm58X1anrIGgHTegDaAhHQKlkqp9ZzPt1fZQoaAZHQKAOgIEbHZNoB03oA2gIR0Cpa4pyQxN7dX2UKGgGR0CcacHI6r/9aAdN6ANoCEdAqWwe6Zpi7XV9lChoBkdAoEMI5aNdaGgHTegDaAhHQKlv/90ihWZ1fZQoaAZHQJ532XyAhB9oB03oA2gIR0CpciTO5avBdX2UKGgGR0CcfUxwyZa3aAdN6ANoCEdAqXkH5+H8CXV9lChoBkdAmpBZX+2mYWgHTegDaAhHQKl5oETQE6l1fZQoaAZHQJnFhC+lCTloB03oA2gIR0CpfYDQiRnwdX2UKGgGR0CYjo+nqFAWaAdN6ANoCEdAqX+m76Hj63V9lChoBkdAmc4hVAAyVWgHTegDaAhHQKmGjewcHW11fZQoaAZHQJiE23solUpoB03oA2gIR0Cphx3ueBhAdX2UKGgGR0CVKWtz0Yj0aAdN6ANoCEdAqYr3x+az/3V9lChoBkdAmENno5ggHWgHTegDaAhHQKmNH9zfaYh1fZQoaAZHQJbvGGN70FtoB03oA2gIR0Cpk/+bExZddX2UKGgGR0CWb3NZvDP4aAdN6ANoCEdAqZSRTOxB3XV9lChoBkdAl5AfpljEvWgHTegDaAhHQKmYcnivPkd1fZQoaAZHQJV6VNvfj0doB03oA2gIR0CpmqPSMLncdX2UKGgGR0CZqjVqesgdaAdN6ANoCEdAqaGMnssxwnV9lChoBkdAmkXoqkM1CWgHTegDaAhHQKmiH9QXQ+l1fZQoaAZHQJa+GhrWRRxoB03oA2gIR0CppfWH+IdmdX2UKGgGR0CXek+tKZlWaAdN6ANoCEdAqagi//NqxnV9lChoBkdAn0WNL+PzWmgHTegDaAhHQKmvCIP9UCJ1fZQoaAZHQJy1EpjMFEBoB03oA2gIR0Cpr50Nz8xcdX2UKGgGR0CdtEb7j1f3aAdN6ANoCEdAqbNygkC3gHV9lChoBkdAm5TzasZHeGgHTegDaAhHQKm1oHYYixF1fZQoaAZHQJx6N8CxNZhoB03oA2gIR0CpvJAs052hdX2UKGgGR0Cf43DvmYBvaAdN6ANoCEdAqb0kORT0hHV9lChoBkdAnsiSkGiYcGgHTegDaAhHQKnA9jJ+2E11fZQoaAZHQJ+QFhfBvaVoB03oA2gIR0CpwyLKvFFVdX2UKGgGR0CcfW8RtgrpaAdN6ANoCEdAqcoMHv+fiHV9lChoBkdAnjXkDIRywWgHTegDaAhHQKnKnQvYe1d1fZQoaAZHQJ/ryJoCdSVoB03oA2gIR0Cpzmtn5BTodX2UKGgGR0CfMksySFGoaAdN6ANoCEdAqdCX7Lt/nXV9lChoBkdAnb2Qb+98JGgHTegDaAhHQKnXqeMAFPl1fZQoaAZHQJ+fIV58jRloB03oA2gIR0Cp2EN6w+t9dX2UKGgGR0CcePPMSsbOaAdN6ANoCEdAqdwhybQTmHV9lChoBkdAoF7gF3Y+S2gHTegDaAhHQKneUBWgezV1fZQoaAZHQJ70VGus90RoB03oA2gIR0Cp5S+xwAEMdX2UKGgGR0CZc5eVs1sMaAdN6ANoCEdAqeXD74zrNXV9lChoBkdAnKw6HKwIMWgHTegDaAhHQKnpm4lyBCl1fZQoaAZHQJ0N0xXXAdpoB03oA2gIR0Cp69FwT/Q0dX2UKGgGR0CgRUlBppN9aAdN6ANoCEdAqfK9gUlAvHV9lChoBkdAoBZfmA9V3mgHTegDaAhHQKnzXk6Lfk51fZQoaAZHQJ/fU9s7+1loB03oA2gIR0Cp9zpb2USqdX2UKGgGR0Cgaoll9SdfaAdN6ANoCEdAqfllNzr/sHV9lChoBkdAnw9Ecjqv/2gHTegDaAhHQKoAPaTwDvF1fZQoaAZHQJ4yXtLL6k9oB03oA2gIR0CqAM894eLfdX2UKGgGR0CexemXPZ7HaAdN6ANoCEdAqgShRGc4HXV9lChoBkdAn5LVARkEtGgHTegDaAhHQKoGxs7dSEV1fZQoaAZHQKCRZHbypaRoB03oA2gIR0CqDaj7ZWaMdX2UKGgGR0CgRyCiyprDaAdN6ANoCEdAqg47TUiIL3V9lChoBkdAoDi+2d/ax2gHTegDaAhHQKoSEHSnccl1fZQoaAZHQKETCyzHCGhoB03oA2gIR0CqFDcIqsltdX2UKGgGR0ChMo0h3aBaaAdN6ANoCEdAqhsLGcWj5HV9lChoBkdAoR2NEiMYM2gHTegDaAhHQKobnSwW30B1fZQoaAZHQKHO5Lg4wRJoB03oA2gIR0CqH3HPE87qdX2UKGgGR0ChYLCMHbAUaAdN6ANoCEdAqiGcL4N7SnV9lChoBkdAn4tDURWcSWgHTegDaAhHQKooegSvkil1fZQoaAZHQKCGyj4YaYNoB03oA2gIR0CqKQywwCbMdX2UKGgGR0CgBImsV+I/aAdN6ANoCEdAqizyASWZ7XV9lChoBkdAmuAYkJKJ22gHTegDaAhHQKovF7gsK9h1fZQoaAZHQKAoj7HhjvxoB03oA2gIR0CqNfg0j1PFdX2UKGgGR0CgOVHck+otaAdN6ANoCEdAqjaOJxeb/nV9lChoBkdAnjVI8+zMR2gHTegDaAhHQKo6ZcD8tPJ1fZQoaAZHQJ+84fwI+ntoB03oA2gIR0CqPJubRWtEdX2UKGgGR0Ces9ycCo0iaAdN6ANoCEdAqkOEU0vXb3V9lChoBkdAoC+qaZx7zGgHTegDaAhHQKpEFSmZVn51fZQoaAZHQJ+a5GwzLwFoB03oA2gIR0CqR++HaewtdX2UKGgGR0Cf/TC04R29aAdN6ANoCEdAqkoWzjWCmXV9lChoBkdAoL7gJu2qk2gHTegDaAhHQKpQ5fcer+51fZQoaAZHQKBmIigTRIBoB03oA2gIR0CqUXswL3K0dX2UKGgGR0CgMIQXyiEhaAdN6ANoCEdAqlVPL9uP3nV9lChoBkdAoFJkRBeHBWgHTegDaAhHQKpXdAhStNl1fZQoaAZHQKA2xyZrpJRoB03oA2gIR0CqXlhBAv+PdX2UKGgGR0CfNcRU3n6maAdN6ANoCEdAql7p26kIonV9lChoBkdAn1OXLaEi+2gHTegDaAhHQKpixTlT3qR1fZQoaAZHQKBvi5NGmUJoB03oA2gIR0CqZOyqU/wBdX2UKGgGR0Cg3WT7uUliaAdN6ANoCEdAqmvFbX6InHV9lChoBkdAoWYQzabnYGgHTegDaAhHQKpsXuxbB451fZQoaAZHQKBSOUUO/cpoB03oA2gIR0CqcCuy3Td+dX2UKGgGR0ChZZT5XU6QaAdN6ANoCEdAqnJWXu3MIXV9lChoBkdAoQZ3o3aSLmgHTegDaAhHQKp5KiCaqjt1fZQoaAZHQKEEOQbuMMtoB03oA2gIR0CqecWtEG7jdX2UKGgGR0ChuC4xL0z1aAdN6ANoCEdAqn2qr3j+73V9lChoBkdAoWhlsWO6umgHTegDaAhHQKp/zfdhy811fZQoaAZHQKDGuaDPGAFoB03oA2gIR0CqhqHoPkJbdX2UKGgGR0CgDTCJfpljaAdN6ANoCEdAqoczSLIgeXV9lChoBkdAnaYWlANXo2gHTegDaAhHQKqLDEiMYMx1fZQoaAZHQJ8+P30wrUdoB03oA2gIR0CqjTIWxhUjdX2UKGgGR0CgDgOC5EtvaAdN6ANoCEdAqpQGsT37DXV9lChoBkdAn9n2kWRA8mgHTegDaAhHQKqUmeDnNgV1fZQoaAZHQJ5jVcpsoDxoB03oA2gIR0CqmHlQdjoZdX2UKGgGR0Cdm2bbUPQOaAdN6ANoCEdAqpqh1ie/YnV9lChoBkdAl+AUahpQDWgHTegDaAhHQKqhkwjdHlR1fZQoaAZHQJry5EroW59oB03oA2gIR0CqoiZ6MR6GdX2UKGgGR0CYAVGdI5HVaAdN6ANoCEdAqqX+Q+2VmnV9lChoBkdAk7J3WJ79h2gHTegDaAhHQKqoKMm4RVZ1fZQoaAZHQJVBTkCFK05oB03oA2gIR0CqrwAiV0LddX2UKGgGR0CXcvV3ljmTaAdN6ANoCEdAqq+ThtLteHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60bf4b660579e52fe5a0ce0f0049c564c6007374c5a559182e4876d2f286e395
|
3 |
+
size 1150373
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1426.005313213996, "std_reward": 139.9140398610663, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T10:06:18.388247"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f964210ae822c2c9a215a48b6fe611645fb8cb211aa2fd95cfae2401bd63009
|
3 |
+
size 2176
|