RYOBEAR commited on
Commit
48e8a37
1 Parent(s): 40b8af3

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1426.01 +/- 139.91
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cda8b4296323ebe38f9619483932a449b6c8a9e93d0db2024494b5132c9dee23
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c33b2dab0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c33b2db40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c33b2dbd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c33b2dc60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2c33b2dcf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2c33b2dd80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2c33b2de10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c33b2dea0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2c33b2df30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c33b2dfc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c33b2e050>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c33b2e0e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2c33b22180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1682845537608969277,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADsEhL6qrzk/b1w2vhYXGb9tdFA/vIWyPjv9mD4gSyI+UfhlP7xAEr9m3GI/gxq+v6vPxb+KyAg//pyAv6ZJDr8avhg/24O5PuORBD+zQ6Y8cEU5v9+/mL6xFki/OSgxvqftO7/U6Co/ArvGPo5TJT/nM4S+480uPabiAT/RFkA+ODrKPwFbPj9voLE+pfwlPwi+2z+Q5ZG7I3CuP3bn8j6RZVm/l+/WP9Pjh788Bbm/qdArPWnpe75pNKm9xAXkvhAzYz/DQka/YBm5vkdz4T5GXa4/Krq/vwK7xj6OUyU/w+kbvrQMpD963znAn8eCvvArJz08B8m/EM66Pnk+Pz83LOu+Hhiyv2QD2T7mZt4/rKg1v7R4PMAJn4e/UhbOPnctob+KEBu+ga2Av3gyw7+9BJW/ZGT3vt8jjr/nr669p+07vyq6v78Cu8Y+jlMlP6lsF75It6o/fwEJwBO+2r5i9lI/kWutP37qdz9MkQE+JpIYP7U4H70ds6c/XLxhv4Y7vz7GKbg/1lmBvyY2fr68Ho2+QafaPhPECz8Dhyk+qTR6P6gxob5S6Q89tbBJvaftO7/U6Co/ArvGPo5TJT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAlMrq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3oUNPgAAAAC8jN6/AAAAAC8xXb0AAAAAlOLoPwAAAAAciTA8AAAAAPvG5T8AAAAAu/KDPQAAAACRx++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFiyNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJ3gzoAAAAAK37ivwAAAABT2wo+AAAAAKpw/z8AAAAAhoMivQAAAACJ5No/AAAAAP2OLD0AAAAAF3fevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPO5MTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAp+/K9AAAAAB3S2r8AAAAAxB4WPQAAAAD0VfA/AAAAAA+QJb0AAAAA/YP2PwAAAAAiarY9AAAAABHV4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwNM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5YqmPAAAAAAmlPm/AAAAAIg2BT4AAAAA8jv5PwAAAAA7Y/89AAAAAEnW4j8AAAAAQKQXvQAAAABzIPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxRm11GLDSMAWyUTegDjAF0lEdAqWKBqfvnbXV9lChoBkdAm58X1anrIGgHTegDaAhHQKlkqp9ZzPt1fZQoaAZHQKAOgIEbHZNoB03oA2gIR0Cpa4pyQxN7dX2UKGgGR0CcacHI6r/9aAdN6ANoCEdAqWwe6Zpi7XV9lChoBkdAoEMI5aNdaGgHTegDaAhHQKlv/90ihWZ1fZQoaAZHQJ532XyAhB9oB03oA2gIR0CpciTO5avBdX2UKGgGR0CcfUxwyZa3aAdN6ANoCEdAqXkH5+H8CXV9lChoBkdAmpBZX+2mYWgHTegDaAhHQKl5oETQE6l1fZQoaAZHQJnFhC+lCTloB03oA2gIR0CpfYDQiRnwdX2UKGgGR0CYjo+nqFAWaAdN6ANoCEdAqX+m76Hj63V9lChoBkdAmc4hVAAyVWgHTegDaAhHQKmGjewcHW11fZQoaAZHQJiE23solUpoB03oA2gIR0Cphx3ueBhAdX2UKGgGR0CVKWtz0Yj0aAdN6ANoCEdAqYr3x+az/3V9lChoBkdAmENno5ggHWgHTegDaAhHQKmNH9zfaYh1fZQoaAZHQJbvGGN70FtoB03oA2gIR0Cpk/+bExZddX2UKGgGR0CWb3NZvDP4aAdN6ANoCEdAqZSRTOxB3XV9lChoBkdAl5AfpljEvWgHTegDaAhHQKmYcnivPkd1fZQoaAZHQJV6VNvfj0doB03oA2gIR0CpmqPSMLncdX2UKGgGR0CZqjVqesgdaAdN6ANoCEdAqaGMnssxwnV9lChoBkdAmkXoqkM1CWgHTegDaAhHQKmiH9QXQ+l1fZQoaAZHQJa+GhrWRRxoB03oA2gIR0CppfWH+IdmdX2UKGgGR0CXek+tKZlWaAdN6ANoCEdAqagi//NqxnV9lChoBkdAn0WNL+PzWmgHTegDaAhHQKmvCIP9UCJ1fZQoaAZHQJy1EpjMFEBoB03oA2gIR0Cpr50Nz8xcdX2UKGgGR0CdtEb7j1f3aAdN6ANoCEdAqbNygkC3gHV9lChoBkdAm5TzasZHeGgHTegDaAhHQKm1oHYYixF1fZQoaAZHQJx6N8CxNZhoB03oA2gIR0CpvJAs052hdX2UKGgGR0Cf43DvmYBvaAdN6ANoCEdAqb0kORT0hHV9lChoBkdAnsiSkGiYcGgHTegDaAhHQKnA9jJ+2E11fZQoaAZHQJ+QFhfBvaVoB03oA2gIR0CpwyLKvFFVdX2UKGgGR0CcfW8RtgrpaAdN6ANoCEdAqcoMHv+fiHV9lChoBkdAnjXkDIRywWgHTegDaAhHQKnKnQvYe1d1fZQoaAZHQJ/ryJoCdSVoB03oA2gIR0Cpzmtn5BTodX2UKGgGR0CfMksySFGoaAdN6ANoCEdAqdCX7Lt/nXV9lChoBkdAnb2Qb+98JGgHTegDaAhHQKnXqeMAFPl1fZQoaAZHQJ+fIV58jRloB03oA2gIR0Cp2EN6w+t9dX2UKGgGR0CcePPMSsbOaAdN6ANoCEdAqdwhybQTmHV9lChoBkdAoF7gF3Y+S2gHTegDaAhHQKneUBWgezV1fZQoaAZHQJ70VGus90RoB03oA2gIR0Cp5S+xwAEMdX2UKGgGR0CZc5eVs1sMaAdN6ANoCEdAqeXD74zrNXV9lChoBkdAnKw6HKwIMWgHTegDaAhHQKnpm4lyBCl1fZQoaAZHQJ0N0xXXAdpoB03oA2gIR0Cp69FwT/Q0dX2UKGgGR0CgRUlBppN9aAdN6ANoCEdAqfK9gUlAvHV9lChoBkdAoBZfmA9V3mgHTegDaAhHQKnzXk6Lfk51fZQoaAZHQJ/fU9s7+1loB03oA2gIR0Cp9zpb2USqdX2UKGgGR0Cgaoll9SdfaAdN6ANoCEdAqfllNzr/sHV9lChoBkdAnw9Ecjqv/2gHTegDaAhHQKoAPaTwDvF1fZQoaAZHQJ4yXtLL6k9oB03oA2gIR0CqAM894eLfdX2UKGgGR0CexemXPZ7HaAdN6ANoCEdAqgShRGc4HXV9lChoBkdAn5LVARkEtGgHTegDaAhHQKoGxs7dSEV1fZQoaAZHQKCRZHbypaRoB03oA2gIR0CqDaj7ZWaMdX2UKGgGR0CgRyCiyprDaAdN6ANoCEdAqg47TUiIL3V9lChoBkdAoDi+2d/ax2gHTegDaAhHQKoSEHSnccl1fZQoaAZHQKETCyzHCGhoB03oA2gIR0CqFDcIqsltdX2UKGgGR0ChMo0h3aBaaAdN6ANoCEdAqhsLGcWj5HV9lChoBkdAoR2NEiMYM2gHTegDaAhHQKobnSwW30B1fZQoaAZHQKHO5Lg4wRJoB03oA2gIR0CqH3HPE87qdX2UKGgGR0ChYLCMHbAUaAdN6ANoCEdAqiGcL4N7SnV9lChoBkdAn4tDURWcSWgHTegDaAhHQKooegSvkil1fZQoaAZHQKCGyj4YaYNoB03oA2gIR0CqKQywwCbMdX2UKGgGR0CgBImsV+I/aAdN6ANoCEdAqizyASWZ7XV9lChoBkdAmuAYkJKJ22gHTegDaAhHQKovF7gsK9h1fZQoaAZHQKAoj7HhjvxoB03oA2gIR0CqNfg0j1PFdX2UKGgGR0CgOVHck+otaAdN6ANoCEdAqjaOJxeb/nV9lChoBkdAnjVI8+zMR2gHTegDaAhHQKo6ZcD8tPJ1fZQoaAZHQJ+84fwI+ntoB03oA2gIR0CqPJubRWtEdX2UKGgGR0Ces9ycCo0iaAdN6ANoCEdAqkOEU0vXb3V9lChoBkdAoC+qaZx7zGgHTegDaAhHQKpEFSmZVn51fZQoaAZHQJ+a5GwzLwFoB03oA2gIR0CqR++HaewtdX2UKGgGR0Cf/TC04R29aAdN6ANoCEdAqkoWzjWCmXV9lChoBkdAoL7gJu2qk2gHTegDaAhHQKpQ5fcer+51fZQoaAZHQKBmIigTRIBoB03oA2gIR0CqUXswL3K0dX2UKGgGR0CgMIQXyiEhaAdN6ANoCEdAqlVPL9uP3nV9lChoBkdAoFJkRBeHBWgHTegDaAhHQKpXdAhStNl1fZQoaAZHQKA2xyZrpJRoB03oA2gIR0CqXlhBAv+PdX2UKGgGR0CfNcRU3n6maAdN6ANoCEdAql7p26kIonV9lChoBkdAn1OXLaEi+2gHTegDaAhHQKpixTlT3qR1fZQoaAZHQKBvi5NGmUJoB03oA2gIR0CqZOyqU/wBdX2UKGgGR0Cg3WT7uUliaAdN6ANoCEdAqmvFbX6InHV9lChoBkdAoWYQzabnYGgHTegDaAhHQKpsXuxbB451fZQoaAZHQKBSOUUO/cpoB03oA2gIR0CqcCuy3Td+dX2UKGgGR0ChZZT5XU6QaAdN6ANoCEdAqnJWXu3MIXV9lChoBkdAoQZ3o3aSLmgHTegDaAhHQKp5KiCaqjt1fZQoaAZHQKEEOQbuMMtoB03oA2gIR0CqecWtEG7jdX2UKGgGR0ChuC4xL0z1aAdN6ANoCEdAqn2qr3j+73V9lChoBkdAoWhlsWO6umgHTegDaAhHQKp/zfdhy811fZQoaAZHQKDGuaDPGAFoB03oA2gIR0CqhqHoPkJbdX2UKGgGR0CgDTCJfpljaAdN6ANoCEdAqoczSLIgeXV9lChoBkdAnaYWlANXo2gHTegDaAhHQKqLDEiMYMx1fZQoaAZHQJ8+P30wrUdoB03oA2gIR0CqjTIWxhUjdX2UKGgGR0CgDgOC5EtvaAdN6ANoCEdAqpQGsT37DXV9lChoBkdAn9n2kWRA8mgHTegDaAhHQKqUmeDnNgV1fZQoaAZHQJ5jVcpsoDxoB03oA2gIR0CqmHlQdjoZdX2UKGgGR0Cdm2bbUPQOaAdN6ANoCEdAqpqh1ie/YnV9lChoBkdAl+AUahpQDWgHTegDaAhHQKqhkwjdHlR1fZQoaAZHQJry5EroW59oB03oA2gIR0CqoiZ6MR6GdX2UKGgGR0CYAVGdI5HVaAdN6ANoCEdAqqX+Q+2VmnV9lChoBkdAk7J3WJ79h2gHTegDaAhHQKqoKMm4RVZ1fZQoaAZHQJVBTkCFK05oB03oA2gIR0CqrwAiV0LddX2UKGgGR0CXcvV3ljmTaAdN6ANoCEdAqq+ThtLteHVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d1141f7107a56187ef01cb93293eaf54bfffe6043bd478efb3cf6b4d23b747
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cc549596381cac8bc6ad12ae5139f3d012d825b7deaa138ae634082d9c62c53
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c33b2dab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c33b2db40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c33b2dbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c33b2dc60>", "_build": "<function ActorCriticPolicy._build at 0x7f2c33b2dcf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2c33b2dd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2c33b2de10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c33b2dea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2c33b2df30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c33b2dfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c33b2e050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c33b2e0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c33b22180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682845537608969277, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADsEhL6qrzk/b1w2vhYXGb9tdFA/vIWyPjv9mD4gSyI+UfhlP7xAEr9m3GI/gxq+v6vPxb+KyAg//pyAv6ZJDr8avhg/24O5PuORBD+zQ6Y8cEU5v9+/mL6xFki/OSgxvqftO7/U6Co/ArvGPo5TJT/nM4S+480uPabiAT/RFkA+ODrKPwFbPj9voLE+pfwlPwi+2z+Q5ZG7I3CuP3bn8j6RZVm/l+/WP9Pjh788Bbm/qdArPWnpe75pNKm9xAXkvhAzYz/DQka/YBm5vkdz4T5GXa4/Krq/vwK7xj6OUyU/w+kbvrQMpD963znAn8eCvvArJz08B8m/EM66Pnk+Pz83LOu+Hhiyv2QD2T7mZt4/rKg1v7R4PMAJn4e/UhbOPnctob+KEBu+ga2Av3gyw7+9BJW/ZGT3vt8jjr/nr669p+07vyq6v78Cu8Y+jlMlP6lsF75It6o/fwEJwBO+2r5i9lI/kWutP37qdz9MkQE+JpIYP7U4H70ds6c/XLxhv4Y7vz7GKbg/1lmBvyY2fr68Ho2+QafaPhPECz8Dhyk+qTR6P6gxob5S6Q89tbBJvaftO7/U6Co/ArvGPo5TJT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAlMrq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3oUNPgAAAAC8jN6/AAAAAC8xXb0AAAAAlOLoPwAAAAAciTA8AAAAAPvG5T8AAAAAu/KDPQAAAACRx++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACFiyNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJ3gzoAAAAAK37ivwAAAABT2wo+AAAAAKpw/z8AAAAAhoMivQAAAACJ5No/AAAAAP2OLD0AAAAAF3fevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPO5MTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAp+/K9AAAAAB3S2r8AAAAAxB4WPQAAAAD0VfA/AAAAAA+QJb0AAAAA/YP2PwAAAAAiarY9AAAAABHV4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwNM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5YqmPAAAAAAmlPm/AAAAAIg2BT4AAAAA8jv5PwAAAAA7Y/89AAAAAEnW4j8AAAAAQKQXvQAAAABzIPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxRm11GLDSMAWyUTegDjAF0lEdAqWKBqfvnbXV9lChoBkdAm58X1anrIGgHTegDaAhHQKlkqp9ZzPt1fZQoaAZHQKAOgIEbHZNoB03oA2gIR0Cpa4pyQxN7dX2UKGgGR0CcacHI6r/9aAdN6ANoCEdAqWwe6Zpi7XV9lChoBkdAoEMI5aNdaGgHTegDaAhHQKlv/90ihWZ1fZQoaAZHQJ532XyAhB9oB03oA2gIR0CpciTO5avBdX2UKGgGR0CcfUxwyZa3aAdN6ANoCEdAqXkH5+H8CXV9lChoBkdAmpBZX+2mYWgHTegDaAhHQKl5oETQE6l1fZQoaAZHQJnFhC+lCTloB03oA2gIR0CpfYDQiRnwdX2UKGgGR0CYjo+nqFAWaAdN6ANoCEdAqX+m76Hj63V9lChoBkdAmc4hVAAyVWgHTegDaAhHQKmGjewcHW11fZQoaAZHQJiE23solUpoB03oA2gIR0Cphx3ueBhAdX2UKGgGR0CVKWtz0Yj0aAdN6ANoCEdAqYr3x+az/3V9lChoBkdAmENno5ggHWgHTegDaAhHQKmNH9zfaYh1fZQoaAZHQJbvGGN70FtoB03oA2gIR0Cpk/+bExZddX2UKGgGR0CWb3NZvDP4aAdN6ANoCEdAqZSRTOxB3XV9lChoBkdAl5AfpljEvWgHTegDaAhHQKmYcnivPkd1fZQoaAZHQJV6VNvfj0doB03oA2gIR0CpmqPSMLncdX2UKGgGR0CZqjVqesgdaAdN6ANoCEdAqaGMnssxwnV9lChoBkdAmkXoqkM1CWgHTegDaAhHQKmiH9QXQ+l1fZQoaAZHQJa+GhrWRRxoB03oA2gIR0CppfWH+IdmdX2UKGgGR0CXek+tKZlWaAdN6ANoCEdAqagi//NqxnV9lChoBkdAn0WNL+PzWmgHTegDaAhHQKmvCIP9UCJ1fZQoaAZHQJy1EpjMFEBoB03oA2gIR0Cpr50Nz8xcdX2UKGgGR0CdtEb7j1f3aAdN6ANoCEdAqbNygkC3gHV9lChoBkdAm5TzasZHeGgHTegDaAhHQKm1oHYYixF1fZQoaAZHQJx6N8CxNZhoB03oA2gIR0CpvJAs052hdX2UKGgGR0Cf43DvmYBvaAdN6ANoCEdAqb0kORT0hHV9lChoBkdAnsiSkGiYcGgHTegDaAhHQKnA9jJ+2E11fZQoaAZHQJ+QFhfBvaVoB03oA2gIR0CpwyLKvFFVdX2UKGgGR0CcfW8RtgrpaAdN6ANoCEdAqcoMHv+fiHV9lChoBkdAnjXkDIRywWgHTegDaAhHQKnKnQvYe1d1fZQoaAZHQJ/ryJoCdSVoB03oA2gIR0Cpzmtn5BTodX2UKGgGR0CfMksySFGoaAdN6ANoCEdAqdCX7Lt/nXV9lChoBkdAnb2Qb+98JGgHTegDaAhHQKnXqeMAFPl1fZQoaAZHQJ+fIV58jRloB03oA2gIR0Cp2EN6w+t9dX2UKGgGR0CcePPMSsbOaAdN6ANoCEdAqdwhybQTmHV9lChoBkdAoF7gF3Y+S2gHTegDaAhHQKneUBWgezV1fZQoaAZHQJ70VGus90RoB03oA2gIR0Cp5S+xwAEMdX2UKGgGR0CZc5eVs1sMaAdN6ANoCEdAqeXD74zrNXV9lChoBkdAnKw6HKwIMWgHTegDaAhHQKnpm4lyBCl1fZQoaAZHQJ0N0xXXAdpoB03oA2gIR0Cp69FwT/Q0dX2UKGgGR0CgRUlBppN9aAdN6ANoCEdAqfK9gUlAvHV9lChoBkdAoBZfmA9V3mgHTegDaAhHQKnzXk6Lfk51fZQoaAZHQJ/fU9s7+1loB03oA2gIR0Cp9zpb2USqdX2UKGgGR0Cgaoll9SdfaAdN6ANoCEdAqfllNzr/sHV9lChoBkdAnw9Ecjqv/2gHTegDaAhHQKoAPaTwDvF1fZQoaAZHQJ4yXtLL6k9oB03oA2gIR0CqAM894eLfdX2UKGgGR0CexemXPZ7HaAdN6ANoCEdAqgShRGc4HXV9lChoBkdAn5LVARkEtGgHTegDaAhHQKoGxs7dSEV1fZQoaAZHQKCRZHbypaRoB03oA2gIR0CqDaj7ZWaMdX2UKGgGR0CgRyCiyprDaAdN6ANoCEdAqg47TUiIL3V9lChoBkdAoDi+2d/ax2gHTegDaAhHQKoSEHSnccl1fZQoaAZHQKETCyzHCGhoB03oA2gIR0CqFDcIqsltdX2UKGgGR0ChMo0h3aBaaAdN6ANoCEdAqhsLGcWj5HV9lChoBkdAoR2NEiMYM2gHTegDaAhHQKobnSwW30B1fZQoaAZHQKHO5Lg4wRJoB03oA2gIR0CqH3HPE87qdX2UKGgGR0ChYLCMHbAUaAdN6ANoCEdAqiGcL4N7SnV9lChoBkdAn4tDURWcSWgHTegDaAhHQKooegSvkil1fZQoaAZHQKCGyj4YaYNoB03oA2gIR0CqKQywwCbMdX2UKGgGR0CgBImsV+I/aAdN6ANoCEdAqizyASWZ7XV9lChoBkdAmuAYkJKJ22gHTegDaAhHQKovF7gsK9h1fZQoaAZHQKAoj7HhjvxoB03oA2gIR0CqNfg0j1PFdX2UKGgGR0CgOVHck+otaAdN6ANoCEdAqjaOJxeb/nV9lChoBkdAnjVI8+zMR2gHTegDaAhHQKo6ZcD8tPJ1fZQoaAZHQJ+84fwI+ntoB03oA2gIR0CqPJubRWtEdX2UKGgGR0Ces9ycCo0iaAdN6ANoCEdAqkOEU0vXb3V9lChoBkdAoC+qaZx7zGgHTegDaAhHQKpEFSmZVn51fZQoaAZHQJ+a5GwzLwFoB03oA2gIR0CqR++HaewtdX2UKGgGR0Cf/TC04R29aAdN6ANoCEdAqkoWzjWCmXV9lChoBkdAoL7gJu2qk2gHTegDaAhHQKpQ5fcer+51fZQoaAZHQKBmIigTRIBoB03oA2gIR0CqUXswL3K0dX2UKGgGR0CgMIQXyiEhaAdN6ANoCEdAqlVPL9uP3nV9lChoBkdAoFJkRBeHBWgHTegDaAhHQKpXdAhStNl1fZQoaAZHQKA2xyZrpJRoB03oA2gIR0CqXlhBAv+PdX2UKGgGR0CfNcRU3n6maAdN6ANoCEdAql7p26kIonV9lChoBkdAn1OXLaEi+2gHTegDaAhHQKpixTlT3qR1fZQoaAZHQKBvi5NGmUJoB03oA2gIR0CqZOyqU/wBdX2UKGgGR0Cg3WT7uUliaAdN6ANoCEdAqmvFbX6InHV9lChoBkdAoWYQzabnYGgHTegDaAhHQKpsXuxbB451fZQoaAZHQKBSOUUO/cpoB03oA2gIR0CqcCuy3Td+dX2UKGgGR0ChZZT5XU6QaAdN6ANoCEdAqnJWXu3MIXV9lChoBkdAoQZ3o3aSLmgHTegDaAhHQKp5KiCaqjt1fZQoaAZHQKEEOQbuMMtoB03oA2gIR0CqecWtEG7jdX2UKGgGR0ChuC4xL0z1aAdN6ANoCEdAqn2qr3j+73V9lChoBkdAoWhlsWO6umgHTegDaAhHQKp/zfdhy811fZQoaAZHQKDGuaDPGAFoB03oA2gIR0CqhqHoPkJbdX2UKGgGR0CgDTCJfpljaAdN6ANoCEdAqoczSLIgeXV9lChoBkdAnaYWlANXo2gHTegDaAhHQKqLDEiMYMx1fZQoaAZHQJ8+P30wrUdoB03oA2gIR0CqjTIWxhUjdX2UKGgGR0CgDgOC5EtvaAdN6ANoCEdAqpQGsT37DXV9lChoBkdAn9n2kWRA8mgHTegDaAhHQKqUmeDnNgV1fZQoaAZHQJ5jVcpsoDxoB03oA2gIR0CqmHlQdjoZdX2UKGgGR0Cdm2bbUPQOaAdN6ANoCEdAqpqh1ie/YnV9lChoBkdAl+AUahpQDWgHTegDaAhHQKqhkwjdHlR1fZQoaAZHQJry5EroW59oB03oA2gIR0CqoiZ6MR6GdX2UKGgGR0CYAVGdI5HVaAdN6ANoCEdAqqX+Q+2VmnV9lChoBkdAk7J3WJ79h2gHTegDaAhHQKqoKMm4RVZ1fZQoaAZHQJVBTkCFK05oB03oA2gIR0CqrwAiV0LddX2UKGgGR0CXcvV3ljmTaAdN6ANoCEdAqq+ThtLteHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60bf4b660579e52fe5a0ce0f0049c564c6007374c5a559182e4876d2f286e395
3
+ size 1150373
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1426.005313213996, "std_reward": 139.9140398610663, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T10:06:18.388247"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f964210ae822c2c9a215a48b6fe611645fb8cb211aa2fd95cfae2401bd63009
3
+ size 2176