KaleiNeely
commited on
Commit
•
48cb79c
1
Parent(s):
bd5f1dd
Update README.md
Browse files
README.md
CHANGED
@@ -1,29 +1,60 @@
|
|
1 |
-
### Run Huggingface
|
2 |
|
3 |
-
> This model is developed and converted through https://github.com/BBuf/RWKV-World-HF-Tokenizer. If you have any issues, you can raise them in this project. You're also welcome to star it to follow the subsequent development progress.
|
4 |
|
5 |
#### CPU
|
6 |
|
7 |
```python
|
|
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-world-7b", trust_remote_code=True)
|
12 |
|
13 |
-
text = "
|
14 |
-
prompt =
|
15 |
|
16 |
inputs = tokenizer(prompt, return_tensors="pt")
|
17 |
-
output = model.generate(inputs["input_ids"], max_new_tokens=
|
18 |
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
19 |
```
|
20 |
|
21 |
output:
|
22 |
|
23 |
```shell
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
```
|
28 |
|
29 |
#### GPU
|
@@ -32,22 +63,45 @@ Answer: 科学家在一个未曾探索过的山谷中发现了一群能说流利
|
|
32 |
import torch
|
33 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-world-7b", trust_remote_code=True)
|
37 |
|
38 |
-
text = "
|
39 |
-
prompt =
|
40 |
|
41 |
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
42 |
-
output = model.generate(inputs["input_ids"], max_new_tokens=
|
43 |
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
44 |
```
|
45 |
|
46 |
output:
|
47 |
|
48 |
```shell
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
```
|
53 |
|
|
|
1 |
+
### Run Huggingface RWKV5 World Model
|
2 |
|
|
|
3 |
|
4 |
#### CPU
|
5 |
|
6 |
```python
|
7 |
+
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
|
10 |
+
def generate_prompt(instruction, input=""):
|
11 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
12 |
+
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
13 |
+
if input:
|
14 |
+
return f"""Instruction: {instruction}
|
15 |
+
|
16 |
+
Input: {input}
|
17 |
+
|
18 |
+
Response:"""
|
19 |
+
else:
|
20 |
+
return f"""User: hi
|
21 |
+
|
22 |
+
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
23 |
+
|
24 |
+
User: {instruction}
|
25 |
+
|
26 |
+
Assistant:"""
|
27 |
+
|
28 |
+
|
29 |
+
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-world-7b", trust_remote_code=True).to(torch.float32)
|
30 |
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-world-7b", trust_remote_code=True)
|
31 |
|
32 |
+
text = "请介绍北京的旅游景点"
|
33 |
+
prompt = generate_prompt(text)
|
34 |
|
35 |
inputs = tokenizer(prompt, return_tensors="pt")
|
36 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
|
37 |
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
38 |
```
|
39 |
|
40 |
output:
|
41 |
|
42 |
```shell
|
43 |
+
User: hi
|
44 |
+
|
45 |
+
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
46 |
+
|
47 |
+
User: 请介绍北京的旅游景点
|
48 |
|
49 |
+
Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点:
|
50 |
+
1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。
|
51 |
+
2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。
|
52 |
+
3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。
|
53 |
+
4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。
|
54 |
+
5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。
|
55 |
+
6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。
|
56 |
+
7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。
|
57 |
+
8. 天坛:是中国古代皇家
|
58 |
```
|
59 |
|
60 |
#### GPU
|
|
|
63 |
import torch
|
64 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
65 |
|
66 |
+
def generate_prompt(instruction, input=""):
|
67 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
68 |
+
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
69 |
+
if input:
|
70 |
+
return f"""Instruction: {instruction}
|
71 |
+
|
72 |
+
Input: {input}
|
73 |
+
|
74 |
+
Response:"""
|
75 |
+
else:
|
76 |
+
return f"""User: hi
|
77 |
+
|
78 |
+
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
79 |
+
|
80 |
+
User: {instruction}
|
81 |
+
|
82 |
+
Assistant:"""
|
83 |
+
|
84 |
+
|
85 |
+
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-world-7b", trust_remote_code=True, torch_dtype=torch.float16).to(0)
|
86 |
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-world-7b", trust_remote_code=True)
|
87 |
|
88 |
+
text = "乌兰察布"
|
89 |
+
prompt = generate_prompt(text)
|
90 |
|
91 |
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
92 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
|
93 |
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
94 |
```
|
95 |
|
96 |
output:
|
97 |
|
98 |
```shell
|
99 |
+
User: hi
|
100 |
+
|
101 |
+
Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
|
102 |
+
|
103 |
+
User: 乌兰察布
|
104 |
|
105 |
+
Assistant: 乌兰察布市是中国新疆维吾尔自治区的一个地级市,位于新疆维吾尔自治区西南部,毗邻青海省。乌兰察布市是新疆维吾尔自治区的重要城市之一,也是新疆维吾尔自治区的第二大城市。乌兰察布市是新疆的重要经济中心之一,拥有丰富的自然资源和人口密度,是新疆的重要交通枢纽和商
|
106 |
```
|
107 |
|