rwkv-4-world-169m / tokenization_rwkv_world.py
BBuf's picture
init
2189a7e
raw
history blame
18 kB
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import os
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging, to_py_obj
from transformers.tokenization_utils_base import BatchEncoding
import bisect
import itertools
import re
import unicodedata
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple, Union, overload
from transformers.tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
INIT_TOKENIZER_DOCSTRING,
AddedToken,
BatchEncoding,
EncodedInput,
EncodedInputPair,
PreTokenizedInput,
PreTokenizedInputPair,
PreTrainedTokenizerBase,
TextInput,
TextInputPair,
TruncationStrategy,
)
from transformers.utils import PaddingStrategy, TensorType, add_end_docstrings, logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "rwkv_vocab_v20230424.json",
}
class DATrie:
class Node:
def __init__(self, is_leaf=False, leaf_data=None, tail=""):
self._is_leaf = is_leaf
self._leaf_data = leaf_data
self._tail = tail
self._next_map = {}
def is_leaf(self):
return self._is_leaf
def set_leaf(self):
self._is_leaf = True
def has_next(self, w):
if w in self._next_map:
return True
return False
def add_node(self, w, node):
self._next_map[w] = node
def get_node(self, w):
if w in self._next_map:
return self._next_map[w]
return None
def get_tail(self):
return self._tail
def get_data(self):
return self._leaf_data
def set_data(self, data):
self._leaf_data = data
def __init__(self, special_ids):
self.root = self.Node()
self.data = {}
self.r_data = {}
self.special_ids = special_ids
def insert(self, word, data):
self.data[word] = data
self.r_data[data] = word
idx = 0
node = self.root
while idx < len(word):
w = word[idx]
is_leaf = (idx == (len(word) - 1))
leaf_data = (data if is_leaf else None)
# 不存在则插入
if not node.has_next(w):
node.add_node(w, self.Node(is_leaf=is_leaf, leaf_data=leaf_data))
# last word
node = node.get_node(w)
idx += 1
if not node.is_leaf():
node.set_leaf()
node.set_data(data)
def findStrict(self, word):
idx = 0
node = self.root
while node is not None and idx < len(word):
w = word[idx]
if not node.has_next(w):
return None
# last word
node = node.get_node(w)
idx += 1
if node.is_leaf():
return node.get_data()
return None
def prefix(self, word):
idx = 0
node = self.root
result = []
while node is not None and idx < len(word):
w = word[idx]
if not node.has_next(w):
return result
# last word
node = node.get_node(w)
if node.is_leaf():
result.append([word[:idx + 1], node.get_data()])
idx += 1
return result
def max_prefix(self, content, start_idx):
idx = start_idx
node = self.root
l = len(content)
result = [["", ], ]
while node is not None and idx < l:
w = content[idx]
if not node.has_next(w):
return result[-1]
# last word
node = node.get_node(w)
if node.is_leaf():
result.append([content[start_idx:idx + 1], node.get_data()])
idx += 1
return result[-1]
def max_score(self, content, start_idx):
idx = start_idx
node = self.root
l = len(content)
result = [["", (3, 0)], ]
while node is not None and idx < l:
w = content[idx]
if not node.has_next(w):
break
# last word
node = node.get_node(w)
if node.is_leaf():
result.append([content[start_idx:idx + 1], node.get_data()])
idx += 1
if len(result) > 1:
result = sorted(result, key=lambda x: x[1][1])
return result[-1]
def match(self, content, add_unk=True, unk_id=-1, **kwargs):
# length
l = len(content)
i = 0
result_list = []
while i < l:
match_word = self.max_prefix(content=content, start_idx=i)
# print(match_word)
w = match_word[0]
if len(w) > 0:
result_list.append(match_word[1])
i += len(w)
else:
if add_unk:
result_list.append(unk_id)
i += 1
return result_list
def id2str(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
res_str = ""
for rid in ids:
if rid in self.r_data:
if rid in end_ids:
break
if escape_special_ids and rid in self.special_ids:
continue
rstr = self.r_data[rid]
res_str += rstr
elif rid == 0:
break
else:
print("ERROR unknown id %d" % rid)
res_str += "UNK"
return res_str
def id2str_v2(self, ids, escape_special_ids=True, end_ids=[], **kwargs):
res_str = ""
for rid in ids:
if rid in self.r_data:
if rid in end_ids:
break
rstr = self.r_data[rid]
if escape_special_ids and rid in self.special_ids:
continue
res_str += rstr
elif rid == 0:
break
else:
print("ERROR unknown id %d" % rid)
res_str += "UNK"
return res_str
class RWKVWorldTokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
errors="replace",
**kwargs
):
self.add_bos_token = False
super().__init__(
errors=errors,
**kwargs,
)
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.trie = DATrie(self.all_special_ids)
for k, v in self.encoder.items():
self.trie.insert(k, v)
self.errors = errors # how to handle errors in decoding
self.cache = {}
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is None:
return output
return output + bos_token_ids + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if not self.add_bos_token:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0))
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
def _tokenize(self, text, **kwargs):
"""Tokenize a string."""
return self.trie.match(text, unk_id=self.unk_token_id, **kwargs)
def _decode(self,
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
**kwargs
) -> str:
# Convert inputs to python lists
token_ids = to_py_obj(token_ids)
if isinstance(token_ids, int):
if token_ids in self.all_special_ids and skip_special_tokens:
return ""
return self.decoder.get(token_ids, self.unk_token)
elif isinstance(token_ids, list):
return self.trie.id2str(
token_ids,
escape_special_ids=skip_special_tokens,
**kwargs
)
else:
return token_ids
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.exists(save_directory):
os.mkdir(save_directory)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)
def prepare_for_tokenization(self, text, **kwargs):
return (text, kwargs)
def _encode_plus(
self,
text: Union[TextInput, EncodedInput],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
text_id = self.trie.match(text, unk_id=self.unk_token_id)
return text_id
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
first_ids = get_input_ids(text)
return self.prepare_for_model(
first_ids,
pair_ids=None,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[EncodedInput],
],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
text_id = self.trie.match(text, unk_id=self.unk_token_id)
return text_id
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str):
return [self.trie.match(t, unk_id=self.unk_token_id) for t in text]
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
input_ids = []
for ids_or_pair_ids in batch_text_or_text_pairs:
if not isinstance(ids_or_pair_ids, (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
else:
ids, pair_ids = ids_or_pair_ids
first_ids = get_input_ids(ids)
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
input_ids.append((first_ids, second_ids))
batch_outputs = self._batch_prepare_for_model(
input_ids,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
if len(input_ids) > self.model_max_length:
input_ids = input_ids[-self.model_max_length:]
return input_ids