Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import time
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
import sqlite3
|
6 |
+
from string import punctuation
|
7 |
+
from collections import Counter
|
8 |
+
from math import sqrt
|
9 |
+
|
10 |
+
def next():
|
11 |
+
print("\n" * 18)
|
12 |
+
|
13 |
+
def slow_type(x):
|
14 |
+
typing_speed = 50
|
15 |
+
for l in x:
|
16 |
+
sys.stdout.write(l)
|
17 |
+
sys.stdout.flush()
|
18 |
+
time.sleep(random.random() * 10.0/typing_speed)
|
19 |
+
L = "Person"
|
20 |
+
next()
|
21 |
+
print("\n\n🐶 Hi " + L, end = "")
|
22 |
+
|
23 |
+
A = ', how are you '
|
24 |
+
need_be = 5
|
25 |
+
count = 1
|
26 |
+
ae = 0
|
27 |
+
users_time = 0
|
28 |
+
emotion_lvl = 0
|
29 |
+
check = 1
|
30 |
+
total_time = 0
|
31 |
+
response_length = 0
|
32 |
+
analysis = "off"
|
33 |
+
total_rlen = 0
|
34 |
+
warning_rlen = 0
|
35 |
+
warning_low = .2
|
36 |
+
warning_hi = 1.275
|
37 |
+
l_wl = .2
|
38 |
+
Q = ["Why", "What", "How", "When", "?"]
|
39 |
+
while True:
|
40 |
+
if emotion_lvl != check:
|
41 |
+
check = emotion_lvl
|
42 |
+
dbase = str(emotion_lvl) + ".db"
|
43 |
+
connection = sqlite3.connect(dbase)
|
44 |
+
cursor = connection.cursor()
|
45 |
+
|
46 |
+
try:
|
47 |
+
|
48 |
+
cursor.execute('''
|
49 |
+
CREATE TABLE words (word TEXT UNIQUE)''')
|
50 |
+
|
51 |
+
cursor.execute('''
|
52 |
+
CREATE TABLE sentences (sentence TEXT UNIQUE, used INT NOT NULL DEFAULT 0)''')
|
53 |
+
|
54 |
+
cursor.execute('''
|
55 |
+
CREATE TABLE associations (word_id INT NOT NULL, sentence_id INT NOT NULL, weight REAL NOT NULL)''')
|
56 |
+
|
57 |
+
except:
|
58 |
+
pass
|
59 |
+
|
60 |
+
|
61 |
+
def get_id(entityName, text):
|
62 |
+
tableName = entityName + 's'
|
63 |
+
columnName = entityName
|
64 |
+
cursor.execute('SELECT rowid FROM ' + tableName + ' WHERE ' + columnName + ' = ?', (text,))
|
65 |
+
row = cursor.fetchone()
|
66 |
+
if row:
|
67 |
+
return row[0]
|
68 |
+
else:
|
69 |
+
cursor.execute('INSERT INTO ' + tableName + ' (' + columnName + ') VALUES (?)', (text,))
|
70 |
+
return cursor.lastrowid
|
71 |
+
|
72 |
+
def get_words(text):
|
73 |
+
wordsRegexpString = '(?:\w+|[' + re.escape(punctuation) + ']+)'
|
74 |
+
wordsRegexp = re.compile(wordsRegexpString)
|
75 |
+
wordsList = wordsRegexp.findall(text.lower())
|
76 |
+
return Counter(wordsList).items()
|
77 |
+
|
78 |
+
if ae > 0:
|
79 |
+
print("\n" * 15)
|
80 |
+
name_random = random.randint(1, 5)
|
81 |
+
response_wait = random.randint(0, 2)
|
82 |
+
|
83 |
+
total_time += users_time
|
84 |
+
avg_time = total_time/count
|
85 |
+
|
86 |
+
total_rlen += response_length
|
87 |
+
avg_rlen = int(total_rlen/count)
|
88 |
+
|
89 |
+
if ae <= 1:
|
90 |
+
Z = ("")
|
91 |
+
id_number = 2
|
92 |
+
ae += 1
|
93 |
+
|
94 |
+
if ae >= 2:
|
95 |
+
ae += 1
|
96 |
+
count += 1
|
97 |
+
if avg_time * warning_low >= users_time >= avg_time * warning_hi:
|
98 |
+
if count - 1 > need_be:
|
99 |
+
emotion_lvl = "Annoyed"
|
100 |
+
# 4s
|
101 |
+
# 1.35 = 5s
|
102 |
+
# * .075 = 1s
|
103 |
+
if response_length < avg_rlen * l_wl:
|
104 |
+
if count - 1 > need_be:
|
105 |
+
emotion_lvl = "Annoyed"
|
106 |
+
|
107 |
+
inB = B.title()
|
108 |
+
if "?" in inB:
|
109 |
+
emotion_lvl = "Normal"
|
110 |
+
id_number = 1
|
111 |
+
if "!" in inB:
|
112 |
+
emotion_lvl = "Confused"
|
113 |
+
id_number = 1
|
114 |
+
if inB == Q:
|
115 |
+
emotion_lvl = "Normal"
|
116 |
+
id_number = 1
|
117 |
+
if "Happy" in inB:
|
118 |
+
emotion_lvl = "Happy"
|
119 |
+
id_number = 1
|
120 |
+
if "Sad" in inB:
|
121 |
+
emotion_lvl = "Sad"
|
122 |
+
id_number = 1
|
123 |
+
|
124 |
+
|
125 |
+
inA = A.title()
|
126 |
+
if "Happy" in inA:
|
127 |
+
emotion_lvl = 3
|
128 |
+
id_number = 2
|
129 |
+
if "Sad" in inA:
|
130 |
+
emotion_lvl = 4
|
131 |
+
id_number = 2
|
132 |
+
if "Idk" in inA:
|
133 |
+
emotion_lvl = 5
|
134 |
+
id_number = 2
|
135 |
+
|
136 |
+
if emotion_lvl == "Normal":
|
137 |
+
Z = ("🐶<Normal> ")
|
138 |
+
if emotion_lvl == "Confused":
|
139 |
+
Z = ("🐶<What The Fuck?> ")
|
140 |
+
response_wait += 1
|
141 |
+
if emotion_lvl == "Happy":
|
142 |
+
Z = ("🐶<Wants To Hurt Ypu> ")
|
143 |
+
response_wait = 0
|
144 |
+
if emotion_lvl == "Very Happy":
|
145 |
+
Z = ("🐶<Wants To Hurt You A Lot> ")
|
146 |
+
if emotion_lvl == "Annoyed":
|
147 |
+
Z = ("🐶<I Hate You> ")
|
148 |
+
name_random = random.randint(1,3)
|
149 |
+
response_wait += 3
|
150 |
+
if emotion_lvl == "Sad":
|
151 |
+
Z = ("🐶<I'm Sad> ")
|
152 |
+
|
153 |
+
reading_time = response_length * .3
|
154 |
+
response_final = response_wait + reading_time
|
155 |
+
|
156 |
+
if ae > 1:
|
157 |
+
if "on" in analysis:
|
158 |
+
l = L.title()
|
159 |
+
if id_number == 1:
|
160 |
+
user = L
|
161 |
+
if id_number == 2:
|
162 |
+
user = "Computer"
|
163 |
+
if name_random == 1:
|
164 |
+
yes_no = "yes"
|
165 |
+
if name_random > 1:
|
166 |
+
yes_no = "no"
|
167 |
+
prop_check = users_time / avg_time
|
168 |
+
lw_wl = int(avg_rlen * l_wl)
|
169 |
+
print("(Anaylsis:\n")
|
170 |
+
print("Count: ", count - 1, "\n")
|
171 |
+
|
172 |
+
print("Subject: ", l)
|
173 |
+
print("Avg response time: ", avg_time)
|
174 |
+
print("Last response time: ", users_time)
|
175 |
+
print("Avg word length: ", avg_rlen)
|
176 |
+
print("Last word length: ", response_length, "\n")
|
177 |
+
|
178 |
+
print("Subject: Computer")
|
179 |
+
print("Reading time:", reading_time)
|
180 |
+
print("Response time selected:", response_wait)
|
181 |
+
print("Final response time: ", response_final)
|
182 |
+
print("Used Subjects Name?: ", yes_no, "(", name_random, ")", "\n")
|
183 |
+
if count - 1 >= need_be:
|
184 |
+
print("(AI)")
|
185 |
+
print("Time proportion check: ", prop_check)
|
186 |
+
print("Count ", count - 1, " warning response word length(L): ", lw_wl, "\n")
|
187 |
+
print("Emotion lvl: ", emotion_lvl, "(", user, ")", ")\n")
|
188 |
+
# Anaylsis ends
|
189 |
+
|
190 |
+
print(Z, end = "")
|
191 |
+
# time.sleep(response_final)
|
192 |
+
if name_random == 1:
|
193 |
+
slow_type(A + " " + L + "\n")
|
194 |
+
else:
|
195 |
+
slow_type(A + "\n")
|
196 |
+
start = time.time()
|
197 |
+
print("")
|
198 |
+
|
199 |
+
B = input(L + ": ").strip()
|
200 |
+
next()
|
201 |
+
stop = time.time()
|
202 |
+
users_time = stop - start
|
203 |
+
response_length = len(B.split())
|
204 |
+
|
205 |
+
|
206 |
+
words = get_words(A)
|
207 |
+
words_length = sum([n * len(word) for word, n in words])
|
208 |
+
sentence_id = get_id('sentence', B)
|
209 |
+
for word, n in words:
|
210 |
+
word_id = get_id('word', word)
|
211 |
+
weight = sqrt(n / float(words_length))
|
212 |
+
cursor.execute('INSERT INTO associations VALUES (?, ?, ?)', (word_id, sentence_id, weight,))
|
213 |
+
connection.commit()
|
214 |
+
|
215 |
+
cursor.execute('CREATE TEMPORARY TABLE results(sentence_id INT, sentence TEXT, weight REAL)')
|
216 |
+
|
217 |
+
words = get_words(B)
|
218 |
+
words_length = sum([n * len(word) for word, n in words])
|
219 |
+
for word, n in words:
|
220 |
+
weight = sqrt(n / float(words_length))
|
221 |
+
cursor.execute(
|
222 |
+
'INSERT INTO results SELECT associations.sentence_id, sentences.sentence, ?*associations.weight/(4+sentences.used) FROM words INNER JOIN associations ON associations.word_id=words.rowid INNER JOIN sentences ON sentences.rowid=associations.sentence_id WHERE words.word=?',
|
223 |
+
(weight, word,))
|
224 |
+
|
225 |
+
cursor.execute(
|
226 |
+
'SELECT sentence_id, sentence, SUM(weight) AS sum_weight FROM results GROUP BY sentence_id ORDER BY sum_weight DESC LIMIT 1')
|
227 |
+
row = cursor.fetchone()
|
228 |
+
cursor.execute('DROP TABLE results')
|
229 |
+
|
230 |
+
if row is None:
|
231 |
+
cursor.execute(
|
232 |
+
'SELECT rowid, sentence FROM sentences WHERE used = (SELECT MIN(used) FROM sentences) ORDER BY RANDOM() LIMIT 1')
|
233 |
+
row = cursor.fetchone()
|
234 |
+
|
235 |
+
A = row[1]
|
236 |
+
cursor.execute('UPDATE sentences SET used = used + 1 WHERE rowid = ?', (row[0],))
|