RMHalak commited on
Commit
15b072c
1 Parent(s): 5b5e9db

Task: SequenceClassification

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: RMHalak/Llama-2-7b-hf-BNB-4bits
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "RMHalak/Llama-2-7b-hf-BNB-4bits",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "score"
19
+ ],
20
+ "peft_type": "LORA",
21
+ "r": 8,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "o_proj",
26
+ "v_proj",
27
+ "up_proj",
28
+ "k_proj",
29
+ "q_proj",
30
+ "down_proj",
31
+ "gate_proj"
32
+ ],
33
+ "task_type": "SEQ_CLS",
34
+ "use_dora": false,
35
+ "use_rslora": false
36
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5d19736f5c303f31f2175454ebe47c917e59610566458c144007754f1086f9a
3
+ size 80045992
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "tokenizer_class": "LlamaTokenizer",
39
+ "unk_token": "<unk>",
40
+ "use_default_system_prompt": false
41
+ }
trainer_state-llama2-bnb4-QLORA-super_glue-axg-sequence_classification.json ADDED
@@ -0,0 +1,1470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 1,
6
+ "global_step": 90,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.1111111111111111,
13
+ "grad_norm": 71.10752868652344,
14
+ "learning_rate": 2.5e-05,
15
+ "loss": 1.4086,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.1111111111111111,
20
+ "eval_accuracy": 0.5555555555555556,
21
+ "eval_loss": 1.0401158332824707,
22
+ "eval_runtime": 1.5415,
23
+ "eval_samples_per_second": 46.709,
24
+ "eval_steps_per_second": 3.244,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.2222222222222222,
29
+ "grad_norm": 70.05866241455078,
30
+ "learning_rate": 5e-05,
31
+ "loss": 1.2969,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.2222222222222222,
36
+ "eval_accuracy": 0.4722222222222222,
37
+ "eval_loss": 0.957859456539154,
38
+ "eval_runtime": 1.6886,
39
+ "eval_samples_per_second": 42.639,
40
+ "eval_steps_per_second": 2.961,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.3333333333333333,
45
+ "grad_norm": 51.52368927001953,
46
+ "learning_rate": 4.943181818181818e-05,
47
+ "loss": 1.0192,
48
+ "step": 3
49
+ },
50
+ {
51
+ "epoch": 0.3333333333333333,
52
+ "eval_accuracy": 0.4166666666666667,
53
+ "eval_loss": 1.2530348300933838,
54
+ "eval_runtime": 1.7908,
55
+ "eval_samples_per_second": 40.206,
56
+ "eval_steps_per_second": 2.792,
57
+ "step": 3
58
+ },
59
+ {
60
+ "epoch": 0.4444444444444444,
61
+ "grad_norm": 28.69840431213379,
62
+ "learning_rate": 4.886363636363637e-05,
63
+ "loss": 0.8252,
64
+ "step": 4
65
+ },
66
+ {
67
+ "epoch": 0.4444444444444444,
68
+ "eval_accuracy": 0.4027777777777778,
69
+ "eval_loss": 1.3205498456954956,
70
+ "eval_runtime": 1.7073,
71
+ "eval_samples_per_second": 42.172,
72
+ "eval_steps_per_second": 2.929,
73
+ "step": 4
74
+ },
75
+ {
76
+ "epoch": 0.5555555555555556,
77
+ "grad_norm": 26.98361587524414,
78
+ "learning_rate": 4.829545454545455e-05,
79
+ "loss": 0.8993,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 0.5555555555555556,
84
+ "eval_accuracy": 0.4166666666666667,
85
+ "eval_loss": 1.1885122060775757,
86
+ "eval_runtime": 1.7972,
87
+ "eval_samples_per_second": 40.062,
88
+ "eval_steps_per_second": 2.782,
89
+ "step": 5
90
+ },
91
+ {
92
+ "epoch": 0.6666666666666666,
93
+ "grad_norm": 32.78493881225586,
94
+ "learning_rate": 4.772727272727273e-05,
95
+ "loss": 0.8969,
96
+ "step": 6
97
+ },
98
+ {
99
+ "epoch": 0.6666666666666666,
100
+ "eval_accuracy": 0.4722222222222222,
101
+ "eval_loss": 1.0518155097961426,
102
+ "eval_runtime": 1.7895,
103
+ "eval_samples_per_second": 40.235,
104
+ "eval_steps_per_second": 2.794,
105
+ "step": 6
106
+ },
107
+ {
108
+ "epoch": 0.7777777777777778,
109
+ "grad_norm": 35.246402740478516,
110
+ "learning_rate": 4.715909090909091e-05,
111
+ "loss": 0.7789,
112
+ "step": 7
113
+ },
114
+ {
115
+ "epoch": 0.7777777777777778,
116
+ "eval_accuracy": 0.4027777777777778,
117
+ "eval_loss": 0.95684814453125,
118
+ "eval_runtime": 1.782,
119
+ "eval_samples_per_second": 40.405,
120
+ "eval_steps_per_second": 2.806,
121
+ "step": 7
122
+ },
123
+ {
124
+ "epoch": 0.8888888888888888,
125
+ "grad_norm": 10.608202934265137,
126
+ "learning_rate": 4.659090909090909e-05,
127
+ "loss": 0.8172,
128
+ "step": 8
129
+ },
130
+ {
131
+ "epoch": 0.8888888888888888,
132
+ "eval_accuracy": 0.4722222222222222,
133
+ "eval_loss": 0.9124009609222412,
134
+ "eval_runtime": 1.7,
135
+ "eval_samples_per_second": 42.354,
136
+ "eval_steps_per_second": 2.941,
137
+ "step": 8
138
+ },
139
+ {
140
+ "epoch": 1.0,
141
+ "grad_norm": 20.640520095825195,
142
+ "learning_rate": 4.602272727272727e-05,
143
+ "loss": 0.9466,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 1.0,
148
+ "eval_accuracy": 0.4722222222222222,
149
+ "eval_loss": 0.8895958662033081,
150
+ "eval_runtime": 1.6914,
151
+ "eval_samples_per_second": 42.569,
152
+ "eval_steps_per_second": 2.956,
153
+ "step": 9
154
+ },
155
+ {
156
+ "epoch": 1.1111111111111112,
157
+ "grad_norm": 16.80632972717285,
158
+ "learning_rate": 4.545454545454546e-05,
159
+ "loss": 0.7398,
160
+ "step": 10
161
+ },
162
+ {
163
+ "epoch": 1.1111111111111112,
164
+ "eval_accuracy": 0.4722222222222222,
165
+ "eval_loss": 0.8696831464767456,
166
+ "eval_runtime": 1.7281,
167
+ "eval_samples_per_second": 41.664,
168
+ "eval_steps_per_second": 2.893,
169
+ "step": 10
170
+ },
171
+ {
172
+ "epoch": 1.2222222222222223,
173
+ "grad_norm": 33.25798797607422,
174
+ "learning_rate": 4.488636363636364e-05,
175
+ "loss": 0.8393,
176
+ "step": 11
177
+ },
178
+ {
179
+ "epoch": 1.2222222222222223,
180
+ "eval_accuracy": 0.4722222222222222,
181
+ "eval_loss": 0.8458387851715088,
182
+ "eval_runtime": 1.6403,
183
+ "eval_samples_per_second": 43.894,
184
+ "eval_steps_per_second": 3.048,
185
+ "step": 11
186
+ },
187
+ {
188
+ "epoch": 1.3333333333333333,
189
+ "grad_norm": 18.833730697631836,
190
+ "learning_rate": 4.431818181818182e-05,
191
+ "loss": 0.627,
192
+ "step": 12
193
+ },
194
+ {
195
+ "epoch": 1.3333333333333333,
196
+ "eval_accuracy": 0.4305555555555556,
197
+ "eval_loss": 0.8363681435585022,
198
+ "eval_runtime": 1.7646,
199
+ "eval_samples_per_second": 40.803,
200
+ "eval_steps_per_second": 2.834,
201
+ "step": 12
202
+ },
203
+ {
204
+ "epoch": 1.4444444444444444,
205
+ "grad_norm": 11.44498062133789,
206
+ "learning_rate": 4.375e-05,
207
+ "loss": 0.5691,
208
+ "step": 13
209
+ },
210
+ {
211
+ "epoch": 1.4444444444444444,
212
+ "eval_accuracy": 0.4166666666666667,
213
+ "eval_loss": 0.8569539189338684,
214
+ "eval_runtime": 1.6972,
215
+ "eval_samples_per_second": 42.423,
216
+ "eval_steps_per_second": 2.946,
217
+ "step": 13
218
+ },
219
+ {
220
+ "epoch": 1.5555555555555556,
221
+ "grad_norm": 6.994156360626221,
222
+ "learning_rate": 4.318181818181819e-05,
223
+ "loss": 0.6796,
224
+ "step": 14
225
+ },
226
+ {
227
+ "epoch": 1.5555555555555556,
228
+ "eval_accuracy": 0.4444444444444444,
229
+ "eval_loss": 0.9024861454963684,
230
+ "eval_runtime": 1.6366,
231
+ "eval_samples_per_second": 43.995,
232
+ "eval_steps_per_second": 3.055,
233
+ "step": 14
234
+ },
235
+ {
236
+ "epoch": 1.6666666666666665,
237
+ "grad_norm": 23.839618682861328,
238
+ "learning_rate": 4.261363636363637e-05,
239
+ "loss": 0.6225,
240
+ "step": 15
241
+ },
242
+ {
243
+ "epoch": 1.6666666666666665,
244
+ "eval_accuracy": 0.4722222222222222,
245
+ "eval_loss": 0.9257575273513794,
246
+ "eval_runtime": 1.6451,
247
+ "eval_samples_per_second": 43.767,
248
+ "eval_steps_per_second": 3.039,
249
+ "step": 15
250
+ },
251
+ {
252
+ "epoch": 1.7777777777777777,
253
+ "grad_norm": 23.61461639404297,
254
+ "learning_rate": 4.204545454545455e-05,
255
+ "loss": 0.6299,
256
+ "step": 16
257
+ },
258
+ {
259
+ "epoch": 1.7777777777777777,
260
+ "eval_accuracy": 0.4583333333333333,
261
+ "eval_loss": 0.9147135615348816,
262
+ "eval_runtime": 1.7411,
263
+ "eval_samples_per_second": 41.353,
264
+ "eval_steps_per_second": 2.872,
265
+ "step": 16
266
+ },
267
+ {
268
+ "epoch": 1.8888888888888888,
269
+ "grad_norm": 15.60508918762207,
270
+ "learning_rate": 4.1477272727272734e-05,
271
+ "loss": 0.5009,
272
+ "step": 17
273
+ },
274
+ {
275
+ "epoch": 1.8888888888888888,
276
+ "eval_accuracy": 0.4583333333333333,
277
+ "eval_loss": 0.8712971806526184,
278
+ "eval_runtime": 1.688,
279
+ "eval_samples_per_second": 42.653,
280
+ "eval_steps_per_second": 2.962,
281
+ "step": 17
282
+ },
283
+ {
284
+ "epoch": 2.0,
285
+ "grad_norm": 14.364876747131348,
286
+ "learning_rate": 4.0909090909090915e-05,
287
+ "loss": 0.4875,
288
+ "step": 18
289
+ },
290
+ {
291
+ "epoch": 2.0,
292
+ "eval_accuracy": 0.4305555555555556,
293
+ "eval_loss": 0.8122490644454956,
294
+ "eval_runtime": 1.6995,
295
+ "eval_samples_per_second": 42.366,
296
+ "eval_steps_per_second": 2.942,
297
+ "step": 18
298
+ },
299
+ {
300
+ "epoch": 2.111111111111111,
301
+ "grad_norm": 9.64327621459961,
302
+ "learning_rate": 4.034090909090909e-05,
303
+ "loss": 0.4547,
304
+ "step": 19
305
+ },
306
+ {
307
+ "epoch": 2.111111111111111,
308
+ "eval_accuracy": 0.4444444444444444,
309
+ "eval_loss": 0.7631157636642456,
310
+ "eval_runtime": 1.7098,
311
+ "eval_samples_per_second": 42.11,
312
+ "eval_steps_per_second": 2.924,
313
+ "step": 19
314
+ },
315
+ {
316
+ "epoch": 2.2222222222222223,
317
+ "grad_norm": 8.928176879882812,
318
+ "learning_rate": 3.9772727272727275e-05,
319
+ "loss": 0.3933,
320
+ "step": 20
321
+ },
322
+ {
323
+ "epoch": 2.2222222222222223,
324
+ "eval_accuracy": 0.5138888888888888,
325
+ "eval_loss": 0.7445746660232544,
326
+ "eval_runtime": 1.7154,
327
+ "eval_samples_per_second": 41.973,
328
+ "eval_steps_per_second": 2.915,
329
+ "step": 20
330
+ },
331
+ {
332
+ "epoch": 2.3333333333333335,
333
+ "grad_norm": 12.450410842895508,
334
+ "learning_rate": 3.9204545454545456e-05,
335
+ "loss": 0.3994,
336
+ "step": 21
337
+ },
338
+ {
339
+ "epoch": 2.3333333333333335,
340
+ "eval_accuracy": 0.5416666666666666,
341
+ "eval_loss": 0.7361382246017456,
342
+ "eval_runtime": 1.6893,
343
+ "eval_samples_per_second": 42.621,
344
+ "eval_steps_per_second": 2.96,
345
+ "step": 21
346
+ },
347
+ {
348
+ "epoch": 2.4444444444444446,
349
+ "grad_norm": 9.766682624816895,
350
+ "learning_rate": 3.8636363636363636e-05,
351
+ "loss": 0.4413,
352
+ "step": 22
353
+ },
354
+ {
355
+ "epoch": 2.4444444444444446,
356
+ "eval_accuracy": 0.5972222222222222,
357
+ "eval_loss": 0.7318115234375,
358
+ "eval_runtime": 1.6931,
359
+ "eval_samples_per_second": 42.526,
360
+ "eval_steps_per_second": 2.953,
361
+ "step": 22
362
+ },
363
+ {
364
+ "epoch": 2.5555555555555554,
365
+ "grad_norm": 9.650227546691895,
366
+ "learning_rate": 3.8068181818181816e-05,
367
+ "loss": 0.4032,
368
+ "step": 23
369
+ },
370
+ {
371
+ "epoch": 2.5555555555555554,
372
+ "eval_accuracy": 0.5972222222222222,
373
+ "eval_loss": 0.7219780683517456,
374
+ "eval_runtime": 1.6928,
375
+ "eval_samples_per_second": 42.532,
376
+ "eval_steps_per_second": 2.954,
377
+ "step": 23
378
+ },
379
+ {
380
+ "epoch": 2.6666666666666665,
381
+ "grad_norm": 8.477367401123047,
382
+ "learning_rate": 3.7500000000000003e-05,
383
+ "loss": 0.4308,
384
+ "step": 24
385
+ },
386
+ {
387
+ "epoch": 2.6666666666666665,
388
+ "eval_accuracy": 0.6527777777777778,
389
+ "eval_loss": 0.7055935263633728,
390
+ "eval_runtime": 1.7353,
391
+ "eval_samples_per_second": 41.492,
392
+ "eval_steps_per_second": 2.881,
393
+ "step": 24
394
+ },
395
+ {
396
+ "epoch": 2.7777777777777777,
397
+ "grad_norm": 8.381991386413574,
398
+ "learning_rate": 3.6931818181818184e-05,
399
+ "loss": 0.3827,
400
+ "step": 25
401
+ },
402
+ {
403
+ "epoch": 2.7777777777777777,
404
+ "eval_accuracy": 0.6666666666666666,
405
+ "eval_loss": 0.6947495937347412,
406
+ "eval_runtime": 1.69,
407
+ "eval_samples_per_second": 42.604,
408
+ "eval_steps_per_second": 2.959,
409
+ "step": 25
410
+ },
411
+ {
412
+ "epoch": 2.888888888888889,
413
+ "grad_norm": 18.475757598876953,
414
+ "learning_rate": 3.6363636363636364e-05,
415
+ "loss": 0.3719,
416
+ "step": 26
417
+ },
418
+ {
419
+ "epoch": 2.888888888888889,
420
+ "eval_accuracy": 0.6388888888888888,
421
+ "eval_loss": 0.695068359375,
422
+ "eval_runtime": 1.7654,
423
+ "eval_samples_per_second": 40.785,
424
+ "eval_steps_per_second": 2.832,
425
+ "step": 26
426
+ },
427
+ {
428
+ "epoch": 3.0,
429
+ "grad_norm": 4.149219036102295,
430
+ "learning_rate": 3.579545454545455e-05,
431
+ "loss": 0.2756,
432
+ "step": 27
433
+ },
434
+ {
435
+ "epoch": 3.0,
436
+ "eval_accuracy": 0.625,
437
+ "eval_loss": 0.7118733525276184,
438
+ "eval_runtime": 1.7076,
439
+ "eval_samples_per_second": 42.165,
440
+ "eval_steps_per_second": 2.928,
441
+ "step": 27
442
+ },
443
+ {
444
+ "epoch": 3.111111111111111,
445
+ "grad_norm": 6.201833248138428,
446
+ "learning_rate": 3.522727272727273e-05,
447
+ "loss": 0.3048,
448
+ "step": 28
449
+ },
450
+ {
451
+ "epoch": 3.111111111111111,
452
+ "eval_accuracy": 0.6388888888888888,
453
+ "eval_loss": 0.7207743525505066,
454
+ "eval_runtime": 1.6906,
455
+ "eval_samples_per_second": 42.59,
456
+ "eval_steps_per_second": 2.958,
457
+ "step": 28
458
+ },
459
+ {
460
+ "epoch": 3.2222222222222223,
461
+ "grad_norm": 10.069761276245117,
462
+ "learning_rate": 3.465909090909091e-05,
463
+ "loss": 0.2833,
464
+ "step": 29
465
+ },
466
+ {
467
+ "epoch": 3.2222222222222223,
468
+ "eval_accuracy": 0.6111111111111112,
469
+ "eval_loss": 0.758392333984375,
470
+ "eval_runtime": 1.689,
471
+ "eval_samples_per_second": 42.629,
472
+ "eval_steps_per_second": 2.96,
473
+ "step": 29
474
+ },
475
+ {
476
+ "epoch": 3.3333333333333335,
477
+ "grad_norm": 14.6091947555542,
478
+ "learning_rate": 3.409090909090909e-05,
479
+ "loss": 0.2192,
480
+ "step": 30
481
+ },
482
+ {
483
+ "epoch": 3.3333333333333335,
484
+ "eval_accuracy": 0.625,
485
+ "eval_loss": 0.7625613808631897,
486
+ "eval_runtime": 1.6873,
487
+ "eval_samples_per_second": 42.671,
488
+ "eval_steps_per_second": 2.963,
489
+ "step": 30
490
+ },
491
+ {
492
+ "epoch": 3.4444444444444446,
493
+ "grad_norm": 12.838824272155762,
494
+ "learning_rate": 3.352272727272727e-05,
495
+ "loss": 0.159,
496
+ "step": 31
497
+ },
498
+ {
499
+ "epoch": 3.4444444444444446,
500
+ "eval_accuracy": 0.6666666666666666,
501
+ "eval_loss": 0.7382490634918213,
502
+ "eval_runtime": 1.689,
503
+ "eval_samples_per_second": 42.629,
504
+ "eval_steps_per_second": 2.96,
505
+ "step": 31
506
+ },
507
+ {
508
+ "epoch": 3.5555555555555554,
509
+ "grad_norm": 5.576656341552734,
510
+ "learning_rate": 3.295454545454545e-05,
511
+ "loss": 0.1545,
512
+ "step": 32
513
+ },
514
+ {
515
+ "epoch": 3.5555555555555554,
516
+ "eval_accuracy": 0.6805555555555556,
517
+ "eval_loss": 0.7160136103630066,
518
+ "eval_runtime": 1.688,
519
+ "eval_samples_per_second": 42.655,
520
+ "eval_steps_per_second": 2.962,
521
+ "step": 32
522
+ },
523
+ {
524
+ "epoch": 3.6666666666666665,
525
+ "grad_norm": 3.911334753036499,
526
+ "learning_rate": 3.238636363636364e-05,
527
+ "loss": 0.2048,
528
+ "step": 33
529
+ },
530
+ {
531
+ "epoch": 3.6666666666666665,
532
+ "eval_accuracy": 0.6944444444444444,
533
+ "eval_loss": 0.7091013789176941,
534
+ "eval_runtime": 1.6904,
535
+ "eval_samples_per_second": 42.594,
536
+ "eval_steps_per_second": 2.958,
537
+ "step": 33
538
+ },
539
+ {
540
+ "epoch": 3.7777777777777777,
541
+ "grad_norm": 4.566244125366211,
542
+ "learning_rate": 3.181818181818182e-05,
543
+ "loss": 0.1285,
544
+ "step": 34
545
+ },
546
+ {
547
+ "epoch": 3.7777777777777777,
548
+ "eval_accuracy": 0.7361111111111112,
549
+ "eval_loss": 0.7089945673942566,
550
+ "eval_runtime": 1.6878,
551
+ "eval_samples_per_second": 42.659,
552
+ "eval_steps_per_second": 2.962,
553
+ "step": 34
554
+ },
555
+ {
556
+ "epoch": 3.888888888888889,
557
+ "grad_norm": 4.949621677398682,
558
+ "learning_rate": 3.125e-05,
559
+ "loss": 0.0972,
560
+ "step": 35
561
+ },
562
+ {
563
+ "epoch": 3.888888888888889,
564
+ "eval_accuracy": 0.7361111111111112,
565
+ "eval_loss": 0.7177971601486206,
566
+ "eval_runtime": 1.7101,
567
+ "eval_samples_per_second": 42.104,
568
+ "eval_steps_per_second": 2.924,
569
+ "step": 35
570
+ },
571
+ {
572
+ "epoch": 4.0,
573
+ "grad_norm": 5.815789699554443,
574
+ "learning_rate": 3.068181818181818e-05,
575
+ "loss": 0.1396,
576
+ "step": 36
577
+ },
578
+ {
579
+ "epoch": 4.0,
580
+ "eval_accuracy": 0.7361111111111112,
581
+ "eval_loss": 0.7336485385894775,
582
+ "eval_runtime": 1.704,
583
+ "eval_samples_per_second": 42.252,
584
+ "eval_steps_per_second": 2.934,
585
+ "step": 36
586
+ },
587
+ {
588
+ "epoch": 4.111111111111111,
589
+ "grad_norm": 5.0971174240112305,
590
+ "learning_rate": 3.0113636363636365e-05,
591
+ "loss": 0.1058,
592
+ "step": 37
593
+ },
594
+ {
595
+ "epoch": 4.111111111111111,
596
+ "eval_accuracy": 0.6944444444444444,
597
+ "eval_loss": 0.7677508592605591,
598
+ "eval_runtime": 1.6634,
599
+ "eval_samples_per_second": 43.285,
600
+ "eval_steps_per_second": 3.006,
601
+ "step": 37
602
+ },
603
+ {
604
+ "epoch": 4.222222222222222,
605
+ "grad_norm": 3.026982545852661,
606
+ "learning_rate": 2.954545454545455e-05,
607
+ "loss": 0.1036,
608
+ "step": 38
609
+ },
610
+ {
611
+ "epoch": 4.222222222222222,
612
+ "eval_accuracy": 0.6666666666666666,
613
+ "eval_loss": 0.81514573097229,
614
+ "eval_runtime": 1.7527,
615
+ "eval_samples_per_second": 41.08,
616
+ "eval_steps_per_second": 2.853,
617
+ "step": 38
618
+ },
619
+ {
620
+ "epoch": 4.333333333333333,
621
+ "grad_norm": 3.815314531326294,
622
+ "learning_rate": 2.8977272727272732e-05,
623
+ "loss": 0.0651,
624
+ "step": 39
625
+ },
626
+ {
627
+ "epoch": 4.333333333333333,
628
+ "eval_accuracy": 0.6944444444444444,
629
+ "eval_loss": 0.8406186699867249,
630
+ "eval_runtime": 1.7692,
631
+ "eval_samples_per_second": 40.696,
632
+ "eval_steps_per_second": 2.826,
633
+ "step": 39
634
+ },
635
+ {
636
+ "epoch": 4.444444444444445,
637
+ "grad_norm": 2.897125244140625,
638
+ "learning_rate": 2.8409090909090912e-05,
639
+ "loss": 0.0643,
640
+ "step": 40
641
+ },
642
+ {
643
+ "epoch": 4.444444444444445,
644
+ "eval_accuracy": 0.6944444444444444,
645
+ "eval_loss": 0.8639495372772217,
646
+ "eval_runtime": 1.7505,
647
+ "eval_samples_per_second": 41.132,
648
+ "eval_steps_per_second": 2.856,
649
+ "step": 40
650
+ },
651
+ {
652
+ "epoch": 4.555555555555555,
653
+ "grad_norm": 8.826624870300293,
654
+ "learning_rate": 2.784090909090909e-05,
655
+ "loss": 0.0708,
656
+ "step": 41
657
+ },
658
+ {
659
+ "epoch": 4.555555555555555,
660
+ "eval_accuracy": 0.7083333333333334,
661
+ "eval_loss": 0.8449772000312805,
662
+ "eval_runtime": 1.7389,
663
+ "eval_samples_per_second": 41.404,
664
+ "eval_steps_per_second": 2.875,
665
+ "step": 41
666
+ },
667
+ {
668
+ "epoch": 4.666666666666667,
669
+ "grad_norm": 4.310912132263184,
670
+ "learning_rate": 2.7272727272727273e-05,
671
+ "loss": 0.0571,
672
+ "step": 42
673
+ },
674
+ {
675
+ "epoch": 4.666666666666667,
676
+ "eval_accuracy": 0.7222222222222222,
677
+ "eval_loss": 0.8496870398521423,
678
+ "eval_runtime": 1.6953,
679
+ "eval_samples_per_second": 42.471,
680
+ "eval_steps_per_second": 2.949,
681
+ "step": 42
682
+ },
683
+ {
684
+ "epoch": 4.777777777777778,
685
+ "grad_norm": 0.9157137870788574,
686
+ "learning_rate": 2.6704545454545453e-05,
687
+ "loss": 0.0101,
688
+ "step": 43
689
+ },
690
+ {
691
+ "epoch": 4.777777777777778,
692
+ "eval_accuracy": 0.75,
693
+ "eval_loss": 0.8314664363861084,
694
+ "eval_runtime": 1.696,
695
+ "eval_samples_per_second": 42.452,
696
+ "eval_steps_per_second": 2.948,
697
+ "step": 43
698
+ },
699
+ {
700
+ "epoch": 4.888888888888889,
701
+ "grad_norm": 4.54341983795166,
702
+ "learning_rate": 2.6136363636363637e-05,
703
+ "loss": 0.0345,
704
+ "step": 44
705
+ },
706
+ {
707
+ "epoch": 4.888888888888889,
708
+ "eval_accuracy": 0.75,
709
+ "eval_loss": 0.8536232709884644,
710
+ "eval_runtime": 1.7637,
711
+ "eval_samples_per_second": 40.822,
712
+ "eval_steps_per_second": 2.835,
713
+ "step": 44
714
+ },
715
+ {
716
+ "epoch": 5.0,
717
+ "grad_norm": 2.6652591228485107,
718
+ "learning_rate": 2.5568181818181817e-05,
719
+ "loss": 0.0194,
720
+ "step": 45
721
+ },
722
+ {
723
+ "epoch": 5.0,
724
+ "eval_accuracy": 0.75,
725
+ "eval_loss": 0.8400527834892273,
726
+ "eval_runtime": 1.7745,
727
+ "eval_samples_per_second": 40.575,
728
+ "eval_steps_per_second": 2.818,
729
+ "step": 45
730
+ },
731
+ {
732
+ "epoch": 5.111111111111111,
733
+ "grad_norm": 0.518764078617096,
734
+ "learning_rate": 2.5e-05,
735
+ "loss": 0.005,
736
+ "step": 46
737
+ },
738
+ {
739
+ "epoch": 5.111111111111111,
740
+ "eval_accuracy": 0.75,
741
+ "eval_loss": 0.8562726378440857,
742
+ "eval_runtime": 1.7488,
743
+ "eval_samples_per_second": 41.171,
744
+ "eval_steps_per_second": 2.859,
745
+ "step": 46
746
+ },
747
+ {
748
+ "epoch": 5.222222222222222,
749
+ "grad_norm": 0.5080448389053345,
750
+ "learning_rate": 2.4431818181818185e-05,
751
+ "loss": 0.0092,
752
+ "step": 47
753
+ },
754
+ {
755
+ "epoch": 5.222222222222222,
756
+ "eval_accuracy": 0.75,
757
+ "eval_loss": 0.8858435153961182,
758
+ "eval_runtime": 1.7362,
759
+ "eval_samples_per_second": 41.469,
760
+ "eval_steps_per_second": 2.88,
761
+ "step": 47
762
+ },
763
+ {
764
+ "epoch": 5.333333333333333,
765
+ "grad_norm": 1.4881385564804077,
766
+ "learning_rate": 2.3863636363636365e-05,
767
+ "loss": 0.0117,
768
+ "step": 48
769
+ },
770
+ {
771
+ "epoch": 5.333333333333333,
772
+ "eval_accuracy": 0.7638888888888888,
773
+ "eval_loss": 0.9373347163200378,
774
+ "eval_runtime": 1.7561,
775
+ "eval_samples_per_second": 40.999,
776
+ "eval_steps_per_second": 2.847,
777
+ "step": 48
778
+ },
779
+ {
780
+ "epoch": 5.444444444444445,
781
+ "grad_norm": 0.4491148293018341,
782
+ "learning_rate": 2.3295454545454546e-05,
783
+ "loss": 0.006,
784
+ "step": 49
785
+ },
786
+ {
787
+ "epoch": 5.444444444444445,
788
+ "eval_accuracy": 0.7638888888888888,
789
+ "eval_loss": 0.9894835352897644,
790
+ "eval_runtime": 1.7035,
791
+ "eval_samples_per_second": 42.267,
792
+ "eval_steps_per_second": 2.935,
793
+ "step": 49
794
+ },
795
+ {
796
+ "epoch": 5.555555555555555,
797
+ "grad_norm": 0.5586861371994019,
798
+ "learning_rate": 2.272727272727273e-05,
799
+ "loss": 0.0063,
800
+ "step": 50
801
+ },
802
+ {
803
+ "epoch": 5.555555555555555,
804
+ "eval_accuracy": 0.7777777777777778,
805
+ "eval_loss": 1.0309796333312988,
806
+ "eval_runtime": 1.7142,
807
+ "eval_samples_per_second": 42.001,
808
+ "eval_steps_per_second": 2.917,
809
+ "step": 50
810
+ },
811
+ {
812
+ "epoch": 5.666666666666667,
813
+ "grad_norm": 1.2758698463439941,
814
+ "learning_rate": 2.215909090909091e-05,
815
+ "loss": 0.0057,
816
+ "step": 51
817
+ },
818
+ {
819
+ "epoch": 5.666666666666667,
820
+ "eval_accuracy": 0.7777777777777778,
821
+ "eval_loss": 1.0968831777572632,
822
+ "eval_runtime": 1.6931,
823
+ "eval_samples_per_second": 42.526,
824
+ "eval_steps_per_second": 2.953,
825
+ "step": 51
826
+ },
827
+ {
828
+ "epoch": 5.777777777777778,
829
+ "grad_norm": 0.4022962152957916,
830
+ "learning_rate": 2.1590909090909093e-05,
831
+ "loss": 0.0024,
832
+ "step": 52
833
+ },
834
+ {
835
+ "epoch": 5.777777777777778,
836
+ "eval_accuracy": 0.7777777777777778,
837
+ "eval_loss": 1.1657804250717163,
838
+ "eval_runtime": 1.7525,
839
+ "eval_samples_per_second": 41.083,
840
+ "eval_steps_per_second": 2.853,
841
+ "step": 52
842
+ },
843
+ {
844
+ "epoch": 5.888888888888889,
845
+ "grad_norm": 8.325399398803711,
846
+ "learning_rate": 2.1022727272727274e-05,
847
+ "loss": 0.0283,
848
+ "step": 53
849
+ },
850
+ {
851
+ "epoch": 5.888888888888889,
852
+ "eval_accuracy": 0.7777777777777778,
853
+ "eval_loss": 1.1517949104309082,
854
+ "eval_runtime": 1.7207,
855
+ "eval_samples_per_second": 41.843,
856
+ "eval_steps_per_second": 2.906,
857
+ "step": 53
858
+ },
859
+ {
860
+ "epoch": 6.0,
861
+ "grad_norm": 0.6889083981513977,
862
+ "learning_rate": 2.0454545454545457e-05,
863
+ "loss": 0.0031,
864
+ "step": 54
865
+ },
866
+ {
867
+ "epoch": 6.0,
868
+ "eval_accuracy": 0.7777777777777778,
869
+ "eval_loss": 1.131449580192566,
870
+ "eval_runtime": 1.7267,
871
+ "eval_samples_per_second": 41.698,
872
+ "eval_steps_per_second": 2.896,
873
+ "step": 54
874
+ },
875
+ {
876
+ "epoch": 6.111111111111111,
877
+ "grad_norm": 0.12238375097513199,
878
+ "learning_rate": 1.9886363636363638e-05,
879
+ "loss": 0.0006,
880
+ "step": 55
881
+ },
882
+ {
883
+ "epoch": 6.111111111111111,
884
+ "eval_accuracy": 0.8055555555555556,
885
+ "eval_loss": 1.120394229888916,
886
+ "eval_runtime": 1.7518,
887
+ "eval_samples_per_second": 41.1,
888
+ "eval_steps_per_second": 2.854,
889
+ "step": 55
890
+ },
891
+ {
892
+ "epoch": 6.222222222222222,
893
+ "grad_norm": 0.04647090286016464,
894
+ "learning_rate": 1.9318181818181818e-05,
895
+ "loss": 0.0004,
896
+ "step": 56
897
+ },
898
+ {
899
+ "epoch": 6.222222222222222,
900
+ "eval_accuracy": 0.8333333333333334,
901
+ "eval_loss": 1.1473143100738525,
902
+ "eval_runtime": 1.6957,
903
+ "eval_samples_per_second": 42.461,
904
+ "eval_steps_per_second": 2.949,
905
+ "step": 56
906
+ },
907
+ {
908
+ "epoch": 6.333333333333333,
909
+ "grad_norm": 0.07002800703048706,
910
+ "learning_rate": 1.8750000000000002e-05,
911
+ "loss": 0.0004,
912
+ "step": 57
913
+ },
914
+ {
915
+ "epoch": 6.333333333333333,
916
+ "eval_accuracy": 0.8333333333333334,
917
+ "eval_loss": 1.1827261447906494,
918
+ "eval_runtime": 1.6914,
919
+ "eval_samples_per_second": 42.567,
920
+ "eval_steps_per_second": 2.956,
921
+ "step": 57
922
+ },
923
+ {
924
+ "epoch": 6.444444444444445,
925
+ "grad_norm": 0.057534411549568176,
926
+ "learning_rate": 1.8181818181818182e-05,
927
+ "loss": 0.0002,
928
+ "step": 58
929
+ },
930
+ {
931
+ "epoch": 6.444444444444445,
932
+ "eval_accuracy": 0.8333333333333334,
933
+ "eval_loss": 1.224190592765808,
934
+ "eval_runtime": 1.6907,
935
+ "eval_samples_per_second": 42.587,
936
+ "eval_steps_per_second": 2.957,
937
+ "step": 58
938
+ },
939
+ {
940
+ "epoch": 6.555555555555555,
941
+ "grad_norm": 0.1322898268699646,
942
+ "learning_rate": 1.7613636363636366e-05,
943
+ "loss": 0.0006,
944
+ "step": 59
945
+ },
946
+ {
947
+ "epoch": 6.555555555555555,
948
+ "eval_accuracy": 0.8333333333333334,
949
+ "eval_loss": 1.2592931985855103,
950
+ "eval_runtime": 1.6878,
951
+ "eval_samples_per_second": 42.659,
952
+ "eval_steps_per_second": 2.962,
953
+ "step": 59
954
+ },
955
+ {
956
+ "epoch": 6.666666666666667,
957
+ "grad_norm": 0.014222492463886738,
958
+ "learning_rate": 1.7045454545454546e-05,
959
+ "loss": 0.0001,
960
+ "step": 60
961
+ },
962
+ {
963
+ "epoch": 6.666666666666667,
964
+ "eval_accuracy": 0.8333333333333334,
965
+ "eval_loss": 1.281473159790039,
966
+ "eval_runtime": 1.6928,
967
+ "eval_samples_per_second": 42.532,
968
+ "eval_steps_per_second": 2.954,
969
+ "step": 60
970
+ },
971
+ {
972
+ "epoch": 6.777777777777778,
973
+ "grad_norm": 3.633732795715332,
974
+ "learning_rate": 1.6477272727272726e-05,
975
+ "loss": 0.0144,
976
+ "step": 61
977
+ },
978
+ {
979
+ "epoch": 6.777777777777778,
980
+ "eval_accuracy": 0.8333333333333334,
981
+ "eval_loss": 1.2948687076568604,
982
+ "eval_runtime": 1.6886,
983
+ "eval_samples_per_second": 42.64,
984
+ "eval_steps_per_second": 2.961,
985
+ "step": 61
986
+ },
987
+ {
988
+ "epoch": 6.888888888888889,
989
+ "grad_norm": 0.6753994226455688,
990
+ "learning_rate": 1.590909090909091e-05,
991
+ "loss": 0.0021,
992
+ "step": 62
993
+ },
994
+ {
995
+ "epoch": 6.888888888888889,
996
+ "eval_accuracy": 0.8333333333333334,
997
+ "eval_loss": 1.303892731666565,
998
+ "eval_runtime": 1.691,
999
+ "eval_samples_per_second": 42.579,
1000
+ "eval_steps_per_second": 2.957,
1001
+ "step": 62
1002
+ },
1003
+ {
1004
+ "epoch": 7.0,
1005
+ "grad_norm": 0.047468412667512894,
1006
+ "learning_rate": 1.534090909090909e-05,
1007
+ "loss": 0.0002,
1008
+ "step": 63
1009
+ },
1010
+ {
1011
+ "epoch": 7.0,
1012
+ "eval_accuracy": 0.8333333333333334,
1013
+ "eval_loss": 1.3037166595458984,
1014
+ "eval_runtime": 1.6895,
1015
+ "eval_samples_per_second": 42.615,
1016
+ "eval_steps_per_second": 2.959,
1017
+ "step": 63
1018
+ },
1019
+ {
1020
+ "epoch": 7.111111111111111,
1021
+ "grad_norm": 0.04554079473018646,
1022
+ "learning_rate": 1.4772727272727274e-05,
1023
+ "loss": 0.0001,
1024
+ "step": 64
1025
+ },
1026
+ {
1027
+ "epoch": 7.111111111111111,
1028
+ "eval_accuracy": 0.8194444444444444,
1029
+ "eval_loss": 1.3078640699386597,
1030
+ "eval_runtime": 1.6898,
1031
+ "eval_samples_per_second": 42.608,
1032
+ "eval_steps_per_second": 2.959,
1033
+ "step": 64
1034
+ },
1035
+ {
1036
+ "epoch": 7.222222222222222,
1037
+ "grad_norm": 0.010344511829316616,
1038
+ "learning_rate": 1.4204545454545456e-05,
1039
+ "loss": 0.0001,
1040
+ "step": 65
1041
+ },
1042
+ {
1043
+ "epoch": 7.222222222222222,
1044
+ "eval_accuracy": 0.8055555555555556,
1045
+ "eval_loss": 1.3234918117523193,
1046
+ "eval_runtime": 1.6967,
1047
+ "eval_samples_per_second": 42.434,
1048
+ "eval_steps_per_second": 2.947,
1049
+ "step": 65
1050
+ },
1051
+ {
1052
+ "epoch": 7.333333333333333,
1053
+ "grad_norm": 0.006933713797479868,
1054
+ "learning_rate": 1.3636363636363637e-05,
1055
+ "loss": 0.0001,
1056
+ "step": 66
1057
+ },
1058
+ {
1059
+ "epoch": 7.333333333333333,
1060
+ "eval_accuracy": 0.8055555555555556,
1061
+ "eval_loss": 1.3226008415222168,
1062
+ "eval_runtime": 1.6947,
1063
+ "eval_samples_per_second": 42.485,
1064
+ "eval_steps_per_second": 2.95,
1065
+ "step": 66
1066
+ },
1067
+ {
1068
+ "epoch": 7.444444444444445,
1069
+ "grad_norm": 0.004614418838173151,
1070
+ "learning_rate": 1.3068181818181819e-05,
1071
+ "loss": 0.0,
1072
+ "step": 67
1073
+ },
1074
+ {
1075
+ "epoch": 7.444444444444445,
1076
+ "eval_accuracy": 0.8055555555555556,
1077
+ "eval_loss": 1.3420900106430054,
1078
+ "eval_runtime": 1.6925,
1079
+ "eval_samples_per_second": 42.54,
1080
+ "eval_steps_per_second": 2.954,
1081
+ "step": 67
1082
+ },
1083
+ {
1084
+ "epoch": 7.555555555555555,
1085
+ "grad_norm": 0.011573988012969494,
1086
+ "learning_rate": 1.25e-05,
1087
+ "loss": 0.0001,
1088
+ "step": 68
1089
+ },
1090
+ {
1091
+ "epoch": 7.555555555555555,
1092
+ "eval_accuracy": 0.8055555555555556,
1093
+ "eval_loss": 1.3453483581542969,
1094
+ "eval_runtime": 1.6925,
1095
+ "eval_samples_per_second": 42.539,
1096
+ "eval_steps_per_second": 2.954,
1097
+ "step": 68
1098
+ },
1099
+ {
1100
+ "epoch": 7.666666666666667,
1101
+ "grad_norm": 0.05624835565686226,
1102
+ "learning_rate": 1.1931818181818183e-05,
1103
+ "loss": 0.0002,
1104
+ "step": 69
1105
+ },
1106
+ {
1107
+ "epoch": 7.666666666666667,
1108
+ "eval_accuracy": 0.8055555555555556,
1109
+ "eval_loss": 1.3481894731521606,
1110
+ "eval_runtime": 1.6884,
1111
+ "eval_samples_per_second": 42.643,
1112
+ "eval_steps_per_second": 2.961,
1113
+ "step": 69
1114
+ },
1115
+ {
1116
+ "epoch": 7.777777777777778,
1117
+ "grad_norm": 0.026880212128162384,
1118
+ "learning_rate": 1.1363636363636365e-05,
1119
+ "loss": 0.0001,
1120
+ "step": 70
1121
+ },
1122
+ {
1123
+ "epoch": 7.777777777777778,
1124
+ "eval_accuracy": 0.7916666666666666,
1125
+ "eval_loss": 1.3691877126693726,
1126
+ "eval_runtime": 1.689,
1127
+ "eval_samples_per_second": 42.628,
1128
+ "eval_steps_per_second": 2.96,
1129
+ "step": 70
1130
+ },
1131
+ {
1132
+ "epoch": 7.888888888888889,
1133
+ "grad_norm": 0.014328360557556152,
1134
+ "learning_rate": 1.0795454545454547e-05,
1135
+ "loss": 0.0001,
1136
+ "step": 71
1137
+ },
1138
+ {
1139
+ "epoch": 7.888888888888889,
1140
+ "eval_accuracy": 0.7916666666666666,
1141
+ "eval_loss": 1.3764379024505615,
1142
+ "eval_runtime": 1.692,
1143
+ "eval_samples_per_second": 42.552,
1144
+ "eval_steps_per_second": 2.955,
1145
+ "step": 71
1146
+ },
1147
+ {
1148
+ "epoch": 8.0,
1149
+ "grad_norm": 0.004069478716701269,
1150
+ "learning_rate": 1.0227272727272729e-05,
1151
+ "loss": 0.0,
1152
+ "step": 72
1153
+ },
1154
+ {
1155
+ "epoch": 8.0,
1156
+ "eval_accuracy": 0.7777777777777778,
1157
+ "eval_loss": 1.3799124956130981,
1158
+ "eval_runtime": 1.6421,
1159
+ "eval_samples_per_second": 43.845,
1160
+ "eval_steps_per_second": 3.045,
1161
+ "step": 72
1162
+ },
1163
+ {
1164
+ "epoch": 8.11111111111111,
1165
+ "grad_norm": 0.029666263610124588,
1166
+ "learning_rate": 9.659090909090909e-06,
1167
+ "loss": 0.0001,
1168
+ "step": 73
1169
+ },
1170
+ {
1171
+ "epoch": 8.11111111111111,
1172
+ "eval_accuracy": 0.7777777777777778,
1173
+ "eval_loss": 1.3902004957199097,
1174
+ "eval_runtime": 1.6942,
1175
+ "eval_samples_per_second": 42.498,
1176
+ "eval_steps_per_second": 2.951,
1177
+ "step": 73
1178
+ },
1179
+ {
1180
+ "epoch": 8.222222222222221,
1181
+ "grad_norm": 0.005981099791824818,
1182
+ "learning_rate": 9.090909090909091e-06,
1183
+ "loss": 0.0,
1184
+ "step": 74
1185
+ },
1186
+ {
1187
+ "epoch": 8.222222222222221,
1188
+ "eval_accuracy": 0.7777777777777778,
1189
+ "eval_loss": 1.3968830108642578,
1190
+ "eval_runtime": 1.6929,
1191
+ "eval_samples_per_second": 42.531,
1192
+ "eval_steps_per_second": 2.954,
1193
+ "step": 74
1194
+ },
1195
+ {
1196
+ "epoch": 8.333333333333334,
1197
+ "grad_norm": 0.008150852285325527,
1198
+ "learning_rate": 8.522727272727273e-06,
1199
+ "loss": 0.0001,
1200
+ "step": 75
1201
+ },
1202
+ {
1203
+ "epoch": 8.333333333333334,
1204
+ "eval_accuracy": 0.7777777777777778,
1205
+ "eval_loss": 1.4002034664154053,
1206
+ "eval_runtime": 1.692,
1207
+ "eval_samples_per_second": 42.554,
1208
+ "eval_steps_per_second": 2.955,
1209
+ "step": 75
1210
+ },
1211
+ {
1212
+ "epoch": 8.444444444444445,
1213
+ "grad_norm": 0.10769578814506531,
1214
+ "learning_rate": 7.954545454545455e-06,
1215
+ "loss": 0.0004,
1216
+ "step": 76
1217
+ },
1218
+ {
1219
+ "epoch": 8.444444444444445,
1220
+ "eval_accuracy": 0.7777777777777778,
1221
+ "eval_loss": 1.4117597341537476,
1222
+ "eval_runtime": 1.6904,
1223
+ "eval_samples_per_second": 42.595,
1224
+ "eval_steps_per_second": 2.958,
1225
+ "step": 76
1226
+ },
1227
+ {
1228
+ "epoch": 8.555555555555555,
1229
+ "grad_norm": 0.026451965793967247,
1230
+ "learning_rate": 7.386363636363637e-06,
1231
+ "loss": 0.0001,
1232
+ "step": 77
1233
+ },
1234
+ {
1235
+ "epoch": 8.555555555555555,
1236
+ "eval_accuracy": 0.7777777777777778,
1237
+ "eval_loss": 1.4056729078292847,
1238
+ "eval_runtime": 1.6873,
1239
+ "eval_samples_per_second": 42.672,
1240
+ "eval_steps_per_second": 2.963,
1241
+ "step": 77
1242
+ },
1243
+ {
1244
+ "epoch": 8.666666666666666,
1245
+ "grad_norm": 0.07714568078517914,
1246
+ "learning_rate": 6.818181818181818e-06,
1247
+ "loss": 0.0003,
1248
+ "step": 78
1249
+ },
1250
+ {
1251
+ "epoch": 8.666666666666666,
1252
+ "eval_accuracy": 0.7777777777777778,
1253
+ "eval_loss": 1.4086921215057373,
1254
+ "eval_runtime": 1.6884,
1255
+ "eval_samples_per_second": 42.643,
1256
+ "eval_steps_per_second": 2.961,
1257
+ "step": 78
1258
+ },
1259
+ {
1260
+ "epoch": 8.777777777777779,
1261
+ "grad_norm": 0.03726133331656456,
1262
+ "learning_rate": 6.25e-06,
1263
+ "loss": 0.0001,
1264
+ "step": 79
1265
+ },
1266
+ {
1267
+ "epoch": 8.777777777777779,
1268
+ "eval_accuracy": 0.7777777777777778,
1269
+ "eval_loss": 1.4101053476333618,
1270
+ "eval_runtime": 1.6929,
1271
+ "eval_samples_per_second": 42.53,
1272
+ "eval_steps_per_second": 2.954,
1273
+ "step": 79
1274
+ },
1275
+ {
1276
+ "epoch": 8.88888888888889,
1277
+ "grad_norm": 0.01760346069931984,
1278
+ "learning_rate": 5.681818181818182e-06,
1279
+ "loss": 0.0001,
1280
+ "step": 80
1281
+ },
1282
+ {
1283
+ "epoch": 8.88888888888889,
1284
+ "eval_accuracy": 0.7777777777777778,
1285
+ "eval_loss": 1.4063137769699097,
1286
+ "eval_runtime": 1.6938,
1287
+ "eval_samples_per_second": 42.508,
1288
+ "eval_steps_per_second": 2.952,
1289
+ "step": 80
1290
+ },
1291
+ {
1292
+ "epoch": 9.0,
1293
+ "grad_norm": 0.05216860771179199,
1294
+ "learning_rate": 5.113636363636364e-06,
1295
+ "loss": 0.0003,
1296
+ "step": 81
1297
+ },
1298
+ {
1299
+ "epoch": 9.0,
1300
+ "eval_accuracy": 0.7777777777777778,
1301
+ "eval_loss": 1.4048177003860474,
1302
+ "eval_runtime": 1.6922,
1303
+ "eval_samples_per_second": 42.549,
1304
+ "eval_steps_per_second": 2.955,
1305
+ "step": 81
1306
+ },
1307
+ {
1308
+ "epoch": 9.11111111111111,
1309
+ "grad_norm": 0.019384268671274185,
1310
+ "learning_rate": 4.5454545454545455e-06,
1311
+ "loss": 0.0001,
1312
+ "step": 82
1313
+ },
1314
+ {
1315
+ "epoch": 9.11111111111111,
1316
+ "eval_accuracy": 0.7777777777777778,
1317
+ "eval_loss": 1.4030442237854004,
1318
+ "eval_runtime": 1.6903,
1319
+ "eval_samples_per_second": 42.595,
1320
+ "eval_steps_per_second": 2.958,
1321
+ "step": 82
1322
+ },
1323
+ {
1324
+ "epoch": 9.222222222222221,
1325
+ "grad_norm": 0.04530010744929314,
1326
+ "learning_rate": 3.9772727272727275e-06,
1327
+ "loss": 0.0002,
1328
+ "step": 83
1329
+ },
1330
+ {
1331
+ "epoch": 9.222222222222221,
1332
+ "eval_accuracy": 0.7777777777777778,
1333
+ "eval_loss": 1.406543254852295,
1334
+ "eval_runtime": 1.6884,
1335
+ "eval_samples_per_second": 42.643,
1336
+ "eval_steps_per_second": 2.961,
1337
+ "step": 83
1338
+ },
1339
+ {
1340
+ "epoch": 9.333333333333334,
1341
+ "grad_norm": 0.006314022000879049,
1342
+ "learning_rate": 3.409090909090909e-06,
1343
+ "loss": 0.0,
1344
+ "step": 84
1345
+ },
1346
+ {
1347
+ "epoch": 9.333333333333334,
1348
+ "eval_accuracy": 0.7777777777777778,
1349
+ "eval_loss": 1.4123640060424805,
1350
+ "eval_runtime": 1.6879,
1351
+ "eval_samples_per_second": 42.656,
1352
+ "eval_steps_per_second": 2.962,
1353
+ "step": 84
1354
+ },
1355
+ {
1356
+ "epoch": 9.444444444444445,
1357
+ "grad_norm": 0.010984798893332481,
1358
+ "learning_rate": 2.840909090909091e-06,
1359
+ "loss": 0.0001,
1360
+ "step": 85
1361
+ },
1362
+ {
1363
+ "epoch": 9.444444444444445,
1364
+ "eval_accuracy": 0.7777777777777778,
1365
+ "eval_loss": 1.4055116176605225,
1366
+ "eval_runtime": 1.6923,
1367
+ "eval_samples_per_second": 42.547,
1368
+ "eval_steps_per_second": 2.955,
1369
+ "step": 85
1370
+ },
1371
+ {
1372
+ "epoch": 9.555555555555555,
1373
+ "grad_norm": 0.04161923751235008,
1374
+ "learning_rate": 2.2727272727272728e-06,
1375
+ "loss": 0.0002,
1376
+ "step": 86
1377
+ },
1378
+ {
1379
+ "epoch": 9.555555555555555,
1380
+ "eval_accuracy": 0.7777777777777778,
1381
+ "eval_loss": 1.4036388397216797,
1382
+ "eval_runtime": 1.6941,
1383
+ "eval_samples_per_second": 42.5,
1384
+ "eval_steps_per_second": 2.951,
1385
+ "step": 86
1386
+ },
1387
+ {
1388
+ "epoch": 9.666666666666666,
1389
+ "grad_norm": 0.02397008240222931,
1390
+ "learning_rate": 1.7045454545454546e-06,
1391
+ "loss": 0.0001,
1392
+ "step": 87
1393
+ },
1394
+ {
1395
+ "epoch": 9.666666666666666,
1396
+ "eval_accuracy": 0.7777777777777778,
1397
+ "eval_loss": 1.4052443504333496,
1398
+ "eval_runtime": 1.6935,
1399
+ "eval_samples_per_second": 42.517,
1400
+ "eval_steps_per_second": 2.953,
1401
+ "step": 87
1402
+ },
1403
+ {
1404
+ "epoch": 9.777777777777779,
1405
+ "grad_norm": 0.020388655364513397,
1406
+ "learning_rate": 1.1363636363636364e-06,
1407
+ "loss": 0.0001,
1408
+ "step": 88
1409
+ },
1410
+ {
1411
+ "epoch": 9.777777777777779,
1412
+ "eval_accuracy": 0.7777777777777778,
1413
+ "eval_loss": 1.403831958770752,
1414
+ "eval_runtime": 1.693,
1415
+ "eval_samples_per_second": 42.529,
1416
+ "eval_steps_per_second": 2.953,
1417
+ "step": 88
1418
+ },
1419
+ {
1420
+ "epoch": 9.88888888888889,
1421
+ "grad_norm": 0.03793564811348915,
1422
+ "learning_rate": 5.681818181818182e-07,
1423
+ "loss": 0.0002,
1424
+ "step": 89
1425
+ },
1426
+ {
1427
+ "epoch": 9.88888888888889,
1428
+ "eval_accuracy": 0.7777777777777778,
1429
+ "eval_loss": 1.4065537452697754,
1430
+ "eval_runtime": 1.6926,
1431
+ "eval_samples_per_second": 42.537,
1432
+ "eval_steps_per_second": 2.954,
1433
+ "step": 89
1434
+ },
1435
+ {
1436
+ "epoch": 10.0,
1437
+ "grad_norm": 0.003561729798093438,
1438
+ "learning_rate": 0.0,
1439
+ "loss": 0.0,
1440
+ "step": 90
1441
+ },
1442
+ {
1443
+ "epoch": 10.0,
1444
+ "eval_accuracy": 0.7777777777777778,
1445
+ "eval_loss": 1.4016788005828857,
1446
+ "eval_runtime": 1.693,
1447
+ "eval_samples_per_second": 42.528,
1448
+ "eval_steps_per_second": 2.953,
1449
+ "step": 90
1450
+ },
1451
+ {
1452
+ "epoch": 10.0,
1453
+ "step": 90,
1454
+ "total_flos": 5016736558481408.0,
1455
+ "train_loss": 0.22732360793484582,
1456
+ "train_runtime": 316.2669,
1457
+ "train_samples_per_second": 8.98,
1458
+ "train_steps_per_second": 0.285
1459
+ }
1460
+ ],
1461
+ "logging_steps": 1,
1462
+ "max_steps": 90,
1463
+ "num_input_tokens_seen": 0,
1464
+ "num_train_epochs": 10,
1465
+ "save_steps": 500,
1466
+ "total_flos": 5016736558481408.0,
1467
+ "train_batch_size": 4,
1468
+ "trial_name": null,
1469
+ "trial_params": null
1470
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54b2fdfc105e4076be4895c4b6354f4d528ec75ef56f5d8e1a28f69d19666043
3
+ size 5048