HK commited on
Commit
60f2730
·
1 Parent(s): 8bb7f4d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 268.11 +/- 18.85
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 266.87 +/- 12.60
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7860ed7fc790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7860ed7fc820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7860ed7fc8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7860ed7fc940>", "_build": "<function ActorCriticPolicy._build at 0x7860ed7fc9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7860ed7fca60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7860ed7fcaf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7860ed7fcb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7860ed7fcc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7860ed7fcca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7860ed7fcd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7860ed7fcdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7860ed7f5340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697239117732316218, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpyOj0fhKO7ShKSu6uk1TyjtQQ9mr+yvQAAgD8AAIA/mk16vmrBK73aGl+9AuwGvGUclT64QMU8AACAPwAAgD8g1j++qjUoP3AXTrzAor2+XJYFvosgkj0AAAAAAAAAAGYMQz4kqsQ+DusmvuJNm74qfBm8wHrnvQAAAAAAAAAAmhpqPSnsLbq+5US27ScwsQuuMztNgWg1AACAPwAAgD+agxo8lNizP5Y0dD5JFNe9n/YvvMDQWr0AAAAAAAAAAE3YMj3NCBs+SsuhvXw1X77vueW8gsEYvQAAAAAAAAAA85KJveGc6rrSVgs8MY2RPNmKkTvuIny9AACAPwAAgD8AqrU8ccYJPqERiDzF2US+z2IvPFAWtDwAAAAAAAAAAJrLITy0BJE+A/BWvsqyc77ztAm+CiymvQAAAAAAAAAAM6BoPfxhOD4KQ1a8BZR9vo5hhjyFdNO8AAAAAAAAAAAgjQ++BRCnPjqJGT4GEpq+mGcQvX7mP70AAAAAAAAAAG3xDb7Z22Q+czCiPvZXeL7GKpA9moK9PQAAAAAAAAAAsxRxvTtzpz/F+v++Tz4Mv0/syrzHvzS+AAAAAAAAAACAl1g9ko+0P5cGqT4aKDK+B9PUPANkYT4AAAAAAAAAANCprT4/bqi9zR3NukXa6jkHl86+zFNGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGtrQ+UyHmCMAWyUTX0BjAF0lEdAqnbyxVyWA3V9lChoBkdAcC1KBNEgGWgHS/ZoCEdAqndGE9Mbm3V9lChoBkdAcP8pFTefqWgHS+ZoCEdAqndOuNgjQnV9lChoBkdAcIRx4IKMN2gHTUEBaAhHQKp3oZdfLLZ1fZQoaAZHQFABrd30PH1oB0u1aAhHQKp3uQ/5ckd1fZQoaAZHQHGNZKzzErJoB01BAWgIR0Cqd+lGPPszdX2UKGgGR0ByIFuAI6bOaAdL7WgIR0Cqd/N7a7EpdX2UKGgGR0BuyDxy4nWraAdNEgFoCEdAqngSbONYKnV9lChoBkdAcZ7HEdeY2WgHS+FoCEdAqniOoaUA1nV9lChoBkdAceTDVYp2EGgHTaoBaAhHQKp4oipvP1N1fZQoaAZHQHER5t78ejpoB00MAWgIR0CqeKz+NtIkdX2UKGgGR0Bx9JZNfw7UaAdL9WgIR0CqePcHObAldX2UKGgGR0BQizOX3QD3aAdLqWgIR0CqeSO2y9mIdX2UKGgGR0BxPQ+9rXUZaAdNAQFoCEdAqnkydFvyb3V9lChoBkdAbpznIQvpQmgHS/loCEdAqnk9J6IFeXV9lChoBkdAcaGU1Q66rmgHS/JoCEdAqnl2YjSofnV9lChoBkdAcaRHUMG5c2gHTRwBaAhHQKp5iBClabF1fZQoaAZHQG2h6UA1ejVoB0v7aAhHQKp6ZB1s+FF1fZQoaAZHQG98ehGpdbBoB0v8aAhHQKp6veSB9Th1fZQoaAZHQHKe7+xW1dBoB00XAWgIR0Cqer9Htnf3dX2UKGgGR0Bwdaqfe1rqaAdNHwFoCEdAqntSKiwjdHV9lChoBkdAceg/VRUFS2gHTRYBaAhHQKp7Y+wC8vp1fZQoaAZHQG8pFVtGd7RoB00RAWgIR0Cqe4Hfdhy9dX2UKGgGR0BwLf80k4WDaAdL8GgIR0Cqe7MxwhnrdX2UKGgGR0ByRW6cy31BaAdL/WgIR0Cqe7+uV5bAdX2UKGgGR0BLutuUD+zdaAdL1mgIR0Cqe9MkQf6odX2UKGgGR0By0jLOiWVvaAdNCwFoCEdAqnv9BnjABXV9lChoBkdAcfw5IH1OCWgHTUQBaAhHQKp8BFkQPI51fZQoaAZHQHGcwiu+yqxoB00CAWgIR0CqfC+qJdjYdX2UKGgGR0Bvg5dOZb6haAdL7WgIR0CqfDJON5t4dX2UKGgGR0BwLUqVhTfjaAdL4WgIR0CqfFsxXXAedX2UKGgGR0BtfpDRc/t6aAdL+WgIR0CqfIk8ifQKdX2UKGgGR0Byd8dyT6i1aAdNPQFoCEdAqn0DA57w8XV9lChoBkdAclW5ULlV+GgHTRUBaAhHQKp9zYcvM8p1fZQoaAZHQHAXDvRZ2ZBoB00DAWgIR0Cqfel6Z6UrdX2UKGgGR0BC+7Dl5nlGaAdLvmgIR0Cqfe3Upd8idX2UKGgGR0Bwl2RuCPIXaAdL7WgIR0Cqfl1QAMlUdX2UKGgGR0Byz0G0NSZSaAdNMQFoCEdAqn6K3Td+HHV9lChoBkdAcQOij+Jgs2gHS/9oCEdAqn7guoP07XV9lChoBkdAbvvzFuNxVGgHS+1oCEdAqn8s9fTkQ3V9lChoBkdAb4NZwGW2PWgHTQUBaAhHQKp/Qd0aIep1fZQoaAZHQHBA7Ra5f+loB0vbaAhHQKp/Y6eXiR51fZQoaAZHQHNaxQrMC91oB00nAWgIR0Cqf4kSuhbodX2UKGgGR0ByPVcSoOx0aAdNFAFoCEdAqopWUD+zdHV9lChoBkdAcWmQXhwVCWgHTQYBaAhHQKqKZHWjGkx1fZQoaAZHQHGD9f9gndBoB01CAWgIR0CqivApz90jdX2UKGgGR0BwLm+L3sX0aAdNCwFoCEdAqoujcmBvrHV9lChoBkdAcFmmkWRA8mgHS+BoCEdAqovofr8iwHV9lChoBkdAbf9GkvboKWgHTQcBaAhHQKqMl/gBLf11fZQoaAZHQFDYUADJU5xoB0u2aAhHQKqMuj4593N1fZQoaAZHQHOIA/keZG9oB00yAWgIR0CqjUjyvs7ddX2UKGgGR0BveGc4HX2/aAdL82gIR0CqjV94mkWRdX2UKGgGR0BxUmvllsguaAdNGAFoCEdAqo1kBQvYe3V9lChoBkdAcmtE9Mbm2mgHS/xoCEdAqo3nP1L8JnV9lChoBkdAcOSbJwKjSGgHS+NoCEdAqo4B0lqrR3V9lChoBkdAcD/6t1ZDA2gHTQYBaAhHQKqONI2fkFR1fZQoaAZHQHAJd6Tnq3VoB0v5aAhHQKqOYiItUXJ1fZQoaAZHQHND42n889xoB00zAWgIR0CqjwW5H3DfdX2UKGgGR0Bw0FKoQ4CIaAdNGQFoCEdAqo9QSi/O+3V9lChoBkdAcRCIppeu3mgHS+hoCEdAqo91FH8TBnV9lChoBkdAbiWqcVgx8GgHTQoBaAhHQKqPsPKdQO51fZQoaAZHQEJL6CUX531oB0u+aAhHQKqQOtqYZ2p1fZQoaAZHQG62xDTjNpxoB0v0aAhHQKqQi1UEPlN1fZQoaAZHQHGDVgc94eNoB00KAWgIR0CqkMS/KyOadX2UKGgGR0ByK4wM6RyPaAdL4GgIR0CqkOQkona4dX2UKGgGR0Bsnoyj59E1aAdL+WgIR0CqkU3FLnLadX2UKGgGR0Bw83SDyvs7aAdL3mgIR0CqkYtW+49YdX2UKGgGR0BwoDZZjhDPaAdNGgJoCEdAqpGtLSNOunV9lChoBkdAcyCC8e0XxmgHTQUBaAhHQKqSPs/IKdB1fZQoaAZHQG9RTQ/oq1BoB0v6aAhHQKqSlRCQcPx1fZQoaAZHQHEBNkBjnV5oB00IAWgIR0Cqkp2j4593dX2UKGgGR0By8AOBlMAWaAdL4WgIR0CqkxqM3qA0dX2UKGgGR0Bwj8pe/pMYaAdNDgFoCEdAqpOIIKMNt3V9lChoBkdAbNpgE2YOUmgHTRIBaAhHQKqURlaKUFB1fZQoaAZHQHC6XyAhB7hoB0v3aAhHQKqUbBKL8791fZQoaAZHQHJyzu0CzTpoB00pAWgIR0CqlHFxGUfQdX2UKGgGR0BwaIR6F/QTaAdL5GgIR0CqlJ+mFajfdX2UKGgGR0BzQywPiDNAaAdL9mgIR0CqlLN9QXQ/dX2UKGgGR0BWmPZqVQhwaAdN6ANoCEdAqpUFnh86WHV9lChoBkdAXuppZfUnX2gHTegDaAhHQKqVGHP/rB11fZQoaAZHQG4NRUWEbo9oB00IAWgIR0CqlUEy+HrRdX2UKGgGR0BzEr1f3N9qaAdNBwFoCEdAqpW/t6X0G3V9lChoBkdAcR7aOxSpBGgHS/RoCEdAqpXuN70Fr3V9lChoBkdAcRb/c32mHmgHS+loCEdAqpYVE/jbSXV9lChoBkdAcx57Ikqto2gHS/VoCEdAqpY4atLcsXV9lChoBkdAcaYWRA8jiWgHTSYBaAhHQKqWRtWMju91fZQoaAZHQHA0Y1DSgGtoB0vpaAhHQKqWiNwR5C51fZQoaAZHQFNzl9jPOY9oB0vRaAhHQKqWlTQ3PzF1fZQoaAZHQE6wrbQC0WxoB0ulaAhHQKqXZ4u9OAR1fZQoaAZHQG7Ja37UG3ZoB0vsaAhHQKqX1KB/Zuh1fZQoaAZHQHC4BVQyhzxoB00IAWgIR0Cql/HL7oB8dX2UKGgGR0ByxL0163RYaAdNAwFoCEdAqpf9cv/R3XV9lChoBkdAcGjc32mHg2gHTQoBaAhHQKqYG9ovi991fZQoaAZHQG750rsjVx1oB0vuaAhHQKqYPbKzRhN1fZQoaAZHQHFbP9kz41xoB00FAWgIR0CqmEUjLSuydX2UKGgGR0Bsmc6vJRwZaAdL/GgIR0CqmHlgMMJAdX2UKGgGR0BvswbQ1JlKaAdL5WgIR0CqmQUV8CxNdX2UKGgGR0BvmYsbvPToaAdL7GgIR0CqmcsTN+spdX2UKGgGR0Bw8mIBRyfdaAdNEQFoCEdAqpnXFefI0nV9lChoBkdAb370HyEtd2gHTQ8BaAhHQKqZ9XNC7bt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae6da8ce3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae6da8ce440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae6da8ce4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae6da8ce560>", "_build": "<function ActorCriticPolicy._build at 0x7ae6da8ce5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7ae6da8ce680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae6da8ce710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae6da8ce7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae6da8ce830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae6da8ce8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae6da8ce950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae6da8ce9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae6da8731c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697270924749745851, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADq8Dr64des+tr8NPWmDnr4yI8g825Z8vAAAAAAAAAAAQLmNPY96aLpyGNY6AJiaNDCz+Drr9fi5AACAPwAAgD9zK8699mxaukyxNLSliFawF0izOKXOnDMAAIA/AACAP6C0BL75Zm4+Y5Jhvq5+Rr58yH+9wnmiuwAAAAAAAAAA2mmIPgheKD9l9sK90j2evtVnsz2uoYa9AAAAAAAAAAA6rWo+k7+dPqJpjb5BgpK+WEmyO783x70AAAAAAAAAABNRGD4IYsk9hrszvp3xQr5IqDE8m9FdPQAAAAAAAAAADeEJPscJVz9w9uk9j47avvMZND4j4UG8AAAAAAAAAACA4Sk9dB2fP2JGKz7nvde+p57ZPSrgrj0AAAAAAAAAAJqJuDxXiDw/ZyaAPXAKf7700uQ8mJNxvAAAAAAAAAAAzWAPPeG8qbq9iuc65DC0NQmY6TmgugS6AACAPwAAgD+N59u9uKW7u4jGAD3cLQc9t+8YPRVf3b0AAIA/AACAPyZ+0D2KtIc//th5PmYMAr9BVRY+2EMvPQAAAAAAAAAAmp6HvMPpVLqstpG1DfYvsN3NeToRobU0AACAPwAAgD/tXAY+HgeVP0L6lz5PDOC+8IFsPnKmqT0AAAAAAAAAADPb/zspQQE/+tH3vSr3or5ACTs8YmaDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIB5CF9KEqMAWyUTVcBjAF0lEdAlJRTJ6po9XV9lChoBkdAcSq9eQdS22gHTRgBaAhHQJSUTarWAgB1fZQoaAZHQHBk8aOxSpBoB00NAWgIR0CUlejjrAxjdX2UKGgGR0BypqbUgB91aAdL6WgIR0CUl3cUM5OrdX2UKGgGR0BxBVcHGCI2aAdNFQFoCEdAlJqQW8AaN3V9lChoBkdAcGB+GXXyy2gHTUABaAhHQJSbWgOBlMB1fZQoaAZHQHM6fj4pMHtoB003AWgIR0CUm8CGvfTDdX2UKGgGR0Bx3u+g13t8aAdNTwFoCEdAlJvT5CWu5nV9lChoBkdAcYgZkCmuT2gHTXsBaAhHQJSc12W6bvx1fZQoaAZHQHGU0vwmVqxoB00oAWgIR0CUnPJ66asqdX2UKGgGR0BxKeDXe3x4aAdNOAFoCEdAlJ2EAT7EYXV9lChoBkdAcbaAAhje9GgHTScBaAhHQJSdt5MURFt1fZQoaAZHQHGP0m+j/MpoB00rAWgIR0CUnfFBY3efdX2UKGgGR0BwQ73JxNqQaAdNNQFoCEdAlJ3v3nIQv3V9lChoBkdAcFovGZNO/WgHTTkBaAhHQJSeSF23azx1fZQoaAZHQG9jKtPpIMBoB00kAWgIR0CUnz4B3iaRdX2UKGgGR0Bx5QxBVuJlaAdNkgFoCEdAlJ+WVZ9uxnV9lChoBkdAcr4C17Y022gHTTQBaAhHQJSfnIjnmq51fZQoaAZHQHKrcXSBshxoB00LAWgIR0CUoIJJoTPCdX2UKGgGR0ByMjwtrbg1aAdNRgFoCEdAlKERnSOR1XV9lChoBkdAbyDJEH+qBGgHTSMBaAhHQJSjGEvkBCF1fZQoaAZHQHEHPCl7+kxoB00SAWgIR0CUo4uxrzoVdX2UKGgGR0BxGIaaTfSAaAdNFAFoCEdAlKOtB4Uvf3V9lChoBkdAceBW1c+qzmgHTS4BaAhHQJSkChkAggZ1fZQoaAZHQHHvddRiw0RoB0v2aAhHQJSkaUs4DLd1fZQoaAZHQHBTAIldC3RoB00vAWgIR0CUpXDZDiOvdX2UKGgGR0BwT8g6ltTDaAdNQQFoCEdAlKXtHDrJKnV9lChoBkdAb70gow22omgHTSMBaAhHQJSmDbWVeKN1fZQoaAZHQHHEschkiEBoB00xAWgIR0CUpnCojv/jdX2UKGgGR0Bxm6ROk+HKaAdNJQFoCEdAlKZ2x+rlvXV9lChoBkdAcBhZVGTcI2gHTQMBaAhHQJSm4vlEJBx1fZQoaAZHQHAXjRMN+b5oB01aAWgIR0CUpyN0NjLCdX2UKGgGR0BwKQmgJ1JUaAdNDAFoCEdAlKciLVFx43V9lChoBkdAbfW2BreqJmgHTQsBaAhHQJSolwuM+/x1fZQoaAZHQHKRsFINEw5oB01iAWgIR0CUqNuRs/IKdX2UKGgGR0BwE9mcvugIaAdNVgFoCEdAlKoJKBd2PnV9lChoBkdAcETsFdLQHGgHTSQBaAhHQJSrr8P4EfV1fZQoaAZHQHFhsnuy/sVoB01BAWgIR0CUrDPy08eTdX2UKGgGR0Bxx56nivPkaAdNOwFoCEdAlKyj3RG+bnV9lChoBkdAcj8y2x6fJ2gHTUYBaAhHQJStg9FF2FF1fZQoaAZHQG9GcfFJg9hoB00/AWgIR0CUrbv99+gEdX2UKGgGR0Bvh2v4dp7DaAdNBAFoCEdAlK6d6X0GvHV9lChoBkdAb3sVQAMlTmgHTR4BaAhHQJSu64I8hcJ1fZQoaAZHQHAsrblA/s5oB01DAWgIR0CUrw0Nz8xcdX2UKGgGR0Bvdk/UvwmWaAdNJgFoCEdAlK81ZkkKNXV9lChoBkdAbi/eXRgJC2gHTRIBaAhHQJSvaUTtb9t1fZQoaAZHQG3oFuejEehoB00UAWgIR0CUr3lQuVX4dX2UKGgGR0Bxz+TmnwXqaAdNTgFoCEdAlK/JD/lyR3V9lChoBkdAcQxApazNU2gHTTYBaAhHQJTCMRXfZVZ1fZQoaAZHQHAVYDklu3toB00bAWgIR0CUwxu6VdHEdX2UKGgGR0BwRgMgEEDAaAdNVAFoCEdAlMOyhFmWdHV9lChoBkdAcK/R9w3o92gHTQwBaAhHQJTGCde6Zpl1fZQoaAZHQHJcfEGZ/kNoB00xAWgIR0CUxoUm2LHddX2UKGgGR0BupQoRZlnRaAdNIgFoCEdAlMaGbgCOm3V9lChoBkdAQhD9VFQVK2gHS/xoCEdAlMarhaTwD3V9lChoBkdAcEB/JNj9XWgHTQwBaAhHQJTIXJeVs1t1fZQoaAZHQHICi/bj94xoB00CAWgIR0CUyHTyrgfmdX2UKGgGR0Bwk0QoTfzjaAdL/mgIR0CUyMzfrKNidX2UKGgGR0By6EzKs+3ZaAdNHAFoCEdAlMldBa9sanV9lChoBkdAckiULDye7WgHTVQBaAhHQJTJ9TuOS4h1fZQoaAZHQG+mMsYl6Z9oB00mAWgIR0CUyg5ggHNYdX2UKGgGR0BwSvZh8YygaAdNUQFoCEdAlMwe3H7xeHV9lChoBkdAS5hV81Gb1GgHS9loCEdAlMzMPBi1A3V9lChoBkdAbKv2Bas6rGgHTW4BaAhHQJTOkn/kvK51fZQoaAZHQHDUzn3cpLFoB00XAWgIR0CU0ADXvphXdX2UKGgGR0BzJ3Zf2K2saAdNSgFoCEdAlND/FBIFvHV9lChoBkdAOubwrlNlAmgHS+poCEdAlNFRRVIZqHV9lChoBkdAcSduEVWS2mgHS+1oCEdAlNFxI4EOiHV9lChoBkdARtVDQZ4wAWgHS/JoCEdAlNHFuivgWXV9lChoBkdAbyYsK9f1H2gHTRQBaAhHQJTS41aW5Yp1fZQoaAZHQGyUf8dgfEJoB00MAWgIR0CU1fS8an76dX2UKGgGR0BRtAcYIjW1aAdL62gIR0CU1lPrfLs9dX2UKGgGR0Bvl7MNc4YKaAdNTQFoCEdAlNjxt+CsfnV9lChoBkdAcXsIkZ75VWgHTSQBaAhHQJTY++rU9ZB1fZQoaAZHQHDjpCjUNKBoB01eAWgIR0CU2ep2ECeVdX2UKGgGR0BORjiwSrYHaAdL02gIR0CU3Ab/ffoBdX2UKGgGR0Bvon9DQZ4waAdNQAFoCEdAlNxGj0th/nV9lChoBkdAcMAaRISUT2gHTQwBaAhHQJTc7kaMrEt1fZQoaAZHQGDKycTakARoB03oA2gIR0CU3WK5kK/mdX2UKGgGR0BwWnjMmnfmaAdNZgFoCEdAlN5eGsV+JHV9lChoBkdAcBTxzq8lHGgHTU0BaAhHQJTeaZDzAet1fZQoaAZHQGwGPLX+VC5oB00YAWgIR0CU3oRujynUdX2UKGgGR0BtUQCMglniaAdNIwFoCEdAlN7CA+Y+jnV9lChoBkdAcM4QZn+Q2mgHTUkBaAhHQJTfmGahHsl1fZQoaAZHQG53DQAuIyloB005AWgIR0CU4Dlbu+h5dX2UKGgGR0ByIz+zdDYzaAdNDwFoCEdAlOBaHoHLR3V9lChoBkdATT0lAu7HyWgHS89oCEdAlOBvV/c32nV9lChoBkdAclXPxhDw6WgHTQ4BaAhHQJTghsoDxLF1fZQoaAZHQHHTNRWLgoBoB00zAmgIR0CU4Yf8/D+BdX2UKGgGR0BwK4BJZntfaAdNUAFoCEdAlOP9kvsZ53V9lChoBkdAcG7kdV/+bWgHTQEBaAhHQJTkBeBxxT91fZQoaAZHQG6yy4FzMidoB00kAWgIR0CU5Ss6q815dX2UKGgGR0BsnLqfOD8MaAdNDAFoCEdAlOVRF/hESnV9lChoBkdAcSvMRpUPx2gHTW4BaAhHQJTl5yNn5BV1fZQoaAZHQHAQhuTA31loB00JAWgIR0CU5h/jKgZkdX2UKGgGR0Bx7WD+R5kcaAdNSAFoCEdAlObkpEx7A3V9lChoBkdAQul4/u9eyGgHS/BoCEdAlOegpKBd2XV9lChoBkdAbjJxAB1cMWgHTTwBaAhHQJToKYKIBR11fZQoaAZHQHDBfVmSQo1oB01GAWgIR0CU6DnkDIRzdX2UKGgGR0Bucs3sHB1taAdNCgFoCEdAlOid8NQTEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:02f70434fb2bdf8804942b52621c5983ceb8e3125a795e81c475a7734cdc09b1
3
- size 146691
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5853c3295437478b036aaf7e4ceb993ef9308eccd0576742ec0a058f4af0d23f
3
+ size 146743
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7860ed7fc790>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7860ed7fc820>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7860ed7fc8b0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7860ed7fc940>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7860ed7fc9d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7860ed7fca60>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7860ed7fcaf0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7860ed7fcb80>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7860ed7fcc10>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7860ed7fcca0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7860ed7fcd30>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7860ed7fcdc0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7860ed7f5340>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1697239117732316218,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpyOj0fhKO7ShKSu6uk1TyjtQQ9mr+yvQAAgD8AAIA/mk16vmrBK73aGl+9AuwGvGUclT64QMU8AACAPwAAgD8g1j++qjUoP3AXTrzAor2+XJYFvosgkj0AAAAAAAAAAGYMQz4kqsQ+DusmvuJNm74qfBm8wHrnvQAAAAAAAAAAmhpqPSnsLbq+5US27ScwsQuuMztNgWg1AACAPwAAgD+agxo8lNizP5Y0dD5JFNe9n/YvvMDQWr0AAAAAAAAAAE3YMj3NCBs+SsuhvXw1X77vueW8gsEYvQAAAAAAAAAA85KJveGc6rrSVgs8MY2RPNmKkTvuIny9AACAPwAAgD8AqrU8ccYJPqERiDzF2US+z2IvPFAWtDwAAAAAAAAAAJrLITy0BJE+A/BWvsqyc77ztAm+CiymvQAAAAAAAAAAM6BoPfxhOD4KQ1a8BZR9vo5hhjyFdNO8AAAAAAAAAAAgjQ++BRCnPjqJGT4GEpq+mGcQvX7mP70AAAAAAAAAAG3xDb7Z22Q+czCiPvZXeL7GKpA9moK9PQAAAAAAAAAAsxRxvTtzpz/F+v++Tz4Mv0/syrzHvzS+AAAAAAAAAACAl1g9ko+0P5cGqT4aKDK+B9PUPANkYT4AAAAAAAAAANCprT4/bqi9zR3NukXa6jkHl86+zFNGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGtrQ+UyHmCMAWyUTX0BjAF0lEdAqnbyxVyWA3V9lChoBkdAcC1KBNEgGWgHS/ZoCEdAqndGE9Mbm3V9lChoBkdAcP8pFTefqWgHS+ZoCEdAqndOuNgjQnV9lChoBkdAcIRx4IKMN2gHTUEBaAhHQKp3oZdfLLZ1fZQoaAZHQFABrd30PH1oB0u1aAhHQKp3uQ/5ckd1fZQoaAZHQHGNZKzzErJoB01BAWgIR0Cqd+lGPPszdX2UKGgGR0ByIFuAI6bOaAdL7WgIR0Cqd/N7a7EpdX2UKGgGR0BuyDxy4nWraAdNEgFoCEdAqngSbONYKnV9lChoBkdAcZ7HEdeY2WgHS+FoCEdAqniOoaUA1nV9lChoBkdAceTDVYp2EGgHTaoBaAhHQKp4oipvP1N1fZQoaAZHQHER5t78ejpoB00MAWgIR0CqeKz+NtIkdX2UKGgGR0Bx9JZNfw7UaAdL9WgIR0CqePcHObAldX2UKGgGR0BQizOX3QD3aAdLqWgIR0CqeSO2y9mIdX2UKGgGR0BxPQ+9rXUZaAdNAQFoCEdAqnkydFvyb3V9lChoBkdAbpznIQvpQmgHS/loCEdAqnk9J6IFeXV9lChoBkdAcaGU1Q66rmgHS/JoCEdAqnl2YjSofnV9lChoBkdAcaRHUMG5c2gHTRwBaAhHQKp5iBClabF1fZQoaAZHQG2h6UA1ejVoB0v7aAhHQKp6ZB1s+FF1fZQoaAZHQG98ehGpdbBoB0v8aAhHQKp6veSB9Th1fZQoaAZHQHKe7+xW1dBoB00XAWgIR0Cqer9Htnf3dX2UKGgGR0Bwdaqfe1rqaAdNHwFoCEdAqntSKiwjdHV9lChoBkdAceg/VRUFS2gHTRYBaAhHQKp7Y+wC8vp1fZQoaAZHQG8pFVtGd7RoB00RAWgIR0Cqe4Hfdhy9dX2UKGgGR0BwLf80k4WDaAdL8GgIR0Cqe7MxwhnrdX2UKGgGR0ByRW6cy31BaAdL/WgIR0Cqe7+uV5bAdX2UKGgGR0BLutuUD+zdaAdL1mgIR0Cqe9MkQf6odX2UKGgGR0By0jLOiWVvaAdNCwFoCEdAqnv9BnjABXV9lChoBkdAcfw5IH1OCWgHTUQBaAhHQKp8BFkQPI51fZQoaAZHQHGcwiu+yqxoB00CAWgIR0CqfC+qJdjYdX2UKGgGR0Bvg5dOZb6haAdL7WgIR0CqfDJON5t4dX2UKGgGR0BwLUqVhTfjaAdL4WgIR0CqfFsxXXAedX2UKGgGR0BtfpDRc/t6aAdL+WgIR0CqfIk8ifQKdX2UKGgGR0Byd8dyT6i1aAdNPQFoCEdAqn0DA57w8XV9lChoBkdAclW5ULlV+GgHTRUBaAhHQKp9zYcvM8p1fZQoaAZHQHAXDvRZ2ZBoB00DAWgIR0Cqfel6Z6UrdX2UKGgGR0BC+7Dl5nlGaAdLvmgIR0Cqfe3Upd8idX2UKGgGR0Bwl2RuCPIXaAdL7WgIR0Cqfl1QAMlUdX2UKGgGR0Byz0G0NSZSaAdNMQFoCEdAqn6K3Td+HHV9lChoBkdAcQOij+Jgs2gHS/9oCEdAqn7guoP07XV9lChoBkdAbvvzFuNxVGgHS+1oCEdAqn8s9fTkQ3V9lChoBkdAb4NZwGW2PWgHTQUBaAhHQKp/Qd0aIep1fZQoaAZHQHBA7Ra5f+loB0vbaAhHQKp/Y6eXiR51fZQoaAZHQHNaxQrMC91oB00nAWgIR0Cqf4kSuhbodX2UKGgGR0ByPVcSoOx0aAdNFAFoCEdAqopWUD+zdHV9lChoBkdAcWmQXhwVCWgHTQYBaAhHQKqKZHWjGkx1fZQoaAZHQHGD9f9gndBoB01CAWgIR0CqivApz90jdX2UKGgGR0BwLm+L3sX0aAdNCwFoCEdAqoujcmBvrHV9lChoBkdAcFmmkWRA8mgHS+BoCEdAqovofr8iwHV9lChoBkdAbf9GkvboKWgHTQcBaAhHQKqMl/gBLf11fZQoaAZHQFDYUADJU5xoB0u2aAhHQKqMuj4593N1fZQoaAZHQHOIA/keZG9oB00yAWgIR0CqjUjyvs7ddX2UKGgGR0BveGc4HX2/aAdL82gIR0CqjV94mkWRdX2UKGgGR0BxUmvllsguaAdNGAFoCEdAqo1kBQvYe3V9lChoBkdAcmtE9Mbm2mgHS/xoCEdAqo3nP1L8JnV9lChoBkdAcOSbJwKjSGgHS+NoCEdAqo4B0lqrR3V9lChoBkdAcD/6t1ZDA2gHTQYBaAhHQKqONI2fkFR1fZQoaAZHQHAJd6Tnq3VoB0v5aAhHQKqOYiItUXJ1fZQoaAZHQHND42n889xoB00zAWgIR0CqjwW5H3DfdX2UKGgGR0Bw0FKoQ4CIaAdNGQFoCEdAqo9QSi/O+3V9lChoBkdAcRCIppeu3mgHS+hoCEdAqo91FH8TBnV9lChoBkdAbiWqcVgx8GgHTQoBaAhHQKqPsPKdQO51fZQoaAZHQEJL6CUX531oB0u+aAhHQKqQOtqYZ2p1fZQoaAZHQG62xDTjNpxoB0v0aAhHQKqQi1UEPlN1fZQoaAZHQHGDVgc94eNoB00KAWgIR0CqkMS/KyOadX2UKGgGR0ByK4wM6RyPaAdL4GgIR0CqkOQkona4dX2UKGgGR0Bsnoyj59E1aAdL+WgIR0CqkU3FLnLadX2UKGgGR0Bw83SDyvs7aAdL3mgIR0CqkYtW+49YdX2UKGgGR0BwoDZZjhDPaAdNGgJoCEdAqpGtLSNOunV9lChoBkdAcyCC8e0XxmgHTQUBaAhHQKqSPs/IKdB1fZQoaAZHQG9RTQ/oq1BoB0v6aAhHQKqSlRCQcPx1fZQoaAZHQHEBNkBjnV5oB00IAWgIR0Cqkp2j4593dX2UKGgGR0By8AOBlMAWaAdL4WgIR0CqkxqM3qA0dX2UKGgGR0Bwj8pe/pMYaAdNDgFoCEdAqpOIIKMNt3V9lChoBkdAbNpgE2YOUmgHTRIBaAhHQKqURlaKUFB1fZQoaAZHQHC6XyAhB7hoB0v3aAhHQKqUbBKL8791fZQoaAZHQHJyzu0CzTpoB00pAWgIR0CqlHFxGUfQdX2UKGgGR0BwaIR6F/QTaAdL5GgIR0CqlJ+mFajfdX2UKGgGR0BzQywPiDNAaAdL9mgIR0CqlLN9QXQ/dX2UKGgGR0BWmPZqVQhwaAdN6ANoCEdAqpUFnh86WHV9lChoBkdAXuppZfUnX2gHTegDaAhHQKqVGHP/rB11fZQoaAZHQG4NRUWEbo9oB00IAWgIR0CqlUEy+HrRdX2UKGgGR0BzEr1f3N9qaAdNBwFoCEdAqpW/t6X0G3V9lChoBkdAcR7aOxSpBGgHS/RoCEdAqpXuN70Fr3V9lChoBkdAcRb/c32mHmgHS+loCEdAqpYVE/jbSXV9lChoBkdAcx57Ikqto2gHS/VoCEdAqpY4atLcsXV9lChoBkdAcaYWRA8jiWgHTSYBaAhHQKqWRtWMju91fZQoaAZHQHA0Y1DSgGtoB0vpaAhHQKqWiNwR5C51fZQoaAZHQFNzl9jPOY9oB0vRaAhHQKqWlTQ3PzF1fZQoaAZHQE6wrbQC0WxoB0ulaAhHQKqXZ4u9OAR1fZQoaAZHQG7Ja37UG3ZoB0vsaAhHQKqX1KB/Zuh1fZQoaAZHQHC4BVQyhzxoB00IAWgIR0Cql/HL7oB8dX2UKGgGR0ByxL0163RYaAdNAwFoCEdAqpf9cv/R3XV9lChoBkdAcGjc32mHg2gHTQoBaAhHQKqYG9ovi991fZQoaAZHQG750rsjVx1oB0vuaAhHQKqYPbKzRhN1fZQoaAZHQHFbP9kz41xoB00FAWgIR0CqmEUjLSuydX2UKGgGR0Bsmc6vJRwZaAdL/GgIR0CqmHlgMMJAdX2UKGgGR0BvswbQ1JlKaAdL5WgIR0CqmQUV8CxNdX2UKGgGR0BvmYsbvPToaAdL7GgIR0CqmcsTN+spdX2UKGgGR0Bw8mIBRyfdaAdNEQFoCEdAqpnXFefI0nV9lChoBkdAb370HyEtd2gHTQ8BaAhHQKqZ9XNC7bt1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae6da8ce3b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae6da8ce440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae6da8ce4d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae6da8ce560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ae6da8ce5f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ae6da8ce680>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae6da8ce710>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae6da8ce7a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ae6da8ce830>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae6da8ce8c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae6da8ce950>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae6da8ce9e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ae6da8731c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1697270924749745851,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADq8Dr64des+tr8NPWmDnr4yI8g825Z8vAAAAAAAAAAAQLmNPY96aLpyGNY6AJiaNDCz+Drr9fi5AACAPwAAgD9zK8699mxaukyxNLSliFawF0izOKXOnDMAAIA/AACAP6C0BL75Zm4+Y5Jhvq5+Rr58yH+9wnmiuwAAAAAAAAAA2mmIPgheKD9l9sK90j2evtVnsz2uoYa9AAAAAAAAAAA6rWo+k7+dPqJpjb5BgpK+WEmyO783x70AAAAAAAAAABNRGD4IYsk9hrszvp3xQr5IqDE8m9FdPQAAAAAAAAAADeEJPscJVz9w9uk9j47avvMZND4j4UG8AAAAAAAAAACA4Sk9dB2fP2JGKz7nvde+p57ZPSrgrj0AAAAAAAAAAJqJuDxXiDw/ZyaAPXAKf7700uQ8mJNxvAAAAAAAAAAAzWAPPeG8qbq9iuc65DC0NQmY6TmgugS6AACAPwAAgD+N59u9uKW7u4jGAD3cLQc9t+8YPRVf3b0AAIA/AACAPyZ+0D2KtIc//th5PmYMAr9BVRY+2EMvPQAAAAAAAAAAmp6HvMPpVLqstpG1DfYvsN3NeToRobU0AACAPwAAgD/tXAY+HgeVP0L6lz5PDOC+8IFsPnKmqT0AAAAAAAAAADPb/zspQQE/+tH3vSr3or5ACTs8YmaDPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIB5CF9KEqMAWyUTVcBjAF0lEdAlJRTJ6po9XV9lChoBkdAcSq9eQdS22gHTRgBaAhHQJSUTarWAgB1fZQoaAZHQHBk8aOxSpBoB00NAWgIR0CUlejjrAxjdX2UKGgGR0BypqbUgB91aAdL6WgIR0CUl3cUM5OrdX2UKGgGR0BxBVcHGCI2aAdNFQFoCEdAlJqQW8AaN3V9lChoBkdAcGB+GXXyy2gHTUABaAhHQJSbWgOBlMB1fZQoaAZHQHM6fj4pMHtoB003AWgIR0CUm8CGvfTDdX2UKGgGR0Bx3u+g13t8aAdNTwFoCEdAlJvT5CWu5nV9lChoBkdAcYgZkCmuT2gHTXsBaAhHQJSc12W6bvx1fZQoaAZHQHGU0vwmVqxoB00oAWgIR0CUnPJ66asqdX2UKGgGR0BxKeDXe3x4aAdNOAFoCEdAlJ2EAT7EYXV9lChoBkdAcbaAAhje9GgHTScBaAhHQJSdt5MURFt1fZQoaAZHQHGP0m+j/MpoB00rAWgIR0CUnfFBY3efdX2UKGgGR0BwQ73JxNqQaAdNNQFoCEdAlJ3v3nIQv3V9lChoBkdAcFovGZNO/WgHTTkBaAhHQJSeSF23azx1fZQoaAZHQG9jKtPpIMBoB00kAWgIR0CUnz4B3iaRdX2UKGgGR0Bx5QxBVuJlaAdNkgFoCEdAlJ+WVZ9uxnV9lChoBkdAcr4C17Y022gHTTQBaAhHQJSfnIjnmq51fZQoaAZHQHKrcXSBshxoB00LAWgIR0CUoIJJoTPCdX2UKGgGR0ByMjwtrbg1aAdNRgFoCEdAlKERnSOR1XV9lChoBkdAbyDJEH+qBGgHTSMBaAhHQJSjGEvkBCF1fZQoaAZHQHEHPCl7+kxoB00SAWgIR0CUo4uxrzoVdX2UKGgGR0BxGIaaTfSAaAdNFAFoCEdAlKOtB4Uvf3V9lChoBkdAceBW1c+qzmgHTS4BaAhHQJSkChkAggZ1fZQoaAZHQHHvddRiw0RoB0v2aAhHQJSkaUs4DLd1fZQoaAZHQHBTAIldC3RoB00vAWgIR0CUpXDZDiOvdX2UKGgGR0BwT8g6ltTDaAdNQQFoCEdAlKXtHDrJKnV9lChoBkdAb70gow22omgHTSMBaAhHQJSmDbWVeKN1fZQoaAZHQHHEschkiEBoB00xAWgIR0CUpnCojv/jdX2UKGgGR0Bxm6ROk+HKaAdNJQFoCEdAlKZ2x+rlvXV9lChoBkdAcBhZVGTcI2gHTQMBaAhHQJSm4vlEJBx1fZQoaAZHQHAXjRMN+b5oB01aAWgIR0CUpyN0NjLCdX2UKGgGR0BwKQmgJ1JUaAdNDAFoCEdAlKciLVFx43V9lChoBkdAbfW2BreqJmgHTQsBaAhHQJSolwuM+/x1fZQoaAZHQHKRsFINEw5oB01iAWgIR0CUqNuRs/IKdX2UKGgGR0BwE9mcvugIaAdNVgFoCEdAlKoJKBd2PnV9lChoBkdAcETsFdLQHGgHTSQBaAhHQJSrr8P4EfV1fZQoaAZHQHFhsnuy/sVoB01BAWgIR0CUrDPy08eTdX2UKGgGR0Bxx56nivPkaAdNOwFoCEdAlKyj3RG+bnV9lChoBkdAcj8y2x6fJ2gHTUYBaAhHQJStg9FF2FF1fZQoaAZHQG9GcfFJg9hoB00/AWgIR0CUrbv99+gEdX2UKGgGR0Bvh2v4dp7DaAdNBAFoCEdAlK6d6X0GvHV9lChoBkdAb3sVQAMlTmgHTR4BaAhHQJSu64I8hcJ1fZQoaAZHQHAsrblA/s5oB01DAWgIR0CUrw0Nz8xcdX2UKGgGR0Bvdk/UvwmWaAdNJgFoCEdAlK81ZkkKNXV9lChoBkdAbi/eXRgJC2gHTRIBaAhHQJSvaUTtb9t1fZQoaAZHQG3oFuejEehoB00UAWgIR0CUr3lQuVX4dX2UKGgGR0Bxz+TmnwXqaAdNTgFoCEdAlK/JD/lyR3V9lChoBkdAcQxApazNU2gHTTYBaAhHQJTCMRXfZVZ1fZQoaAZHQHAVYDklu3toB00bAWgIR0CUwxu6VdHEdX2UKGgGR0BwRgMgEEDAaAdNVAFoCEdAlMOyhFmWdHV9lChoBkdAcK/R9w3o92gHTQwBaAhHQJTGCde6Zpl1fZQoaAZHQHJcfEGZ/kNoB00xAWgIR0CUxoUm2LHddX2UKGgGR0BupQoRZlnRaAdNIgFoCEdAlMaGbgCOm3V9lChoBkdAQhD9VFQVK2gHS/xoCEdAlMarhaTwD3V9lChoBkdAcEB/JNj9XWgHTQwBaAhHQJTIXJeVs1t1fZQoaAZHQHICi/bj94xoB00CAWgIR0CUyHTyrgfmdX2UKGgGR0Bwk0QoTfzjaAdL/mgIR0CUyMzfrKNidX2UKGgGR0By6EzKs+3ZaAdNHAFoCEdAlMldBa9sanV9lChoBkdAckiULDye7WgHTVQBaAhHQJTJ9TuOS4h1fZQoaAZHQG+mMsYl6Z9oB00mAWgIR0CUyg5ggHNYdX2UKGgGR0BwSvZh8YygaAdNUQFoCEdAlMwe3H7xeHV9lChoBkdAS5hV81Gb1GgHS9loCEdAlMzMPBi1A3V9lChoBkdAbKv2Bas6rGgHTW4BaAhHQJTOkn/kvK51fZQoaAZHQHDUzn3cpLFoB00XAWgIR0CU0ADXvphXdX2UKGgGR0BzJ3Zf2K2saAdNSgFoCEdAlND/FBIFvHV9lChoBkdAOubwrlNlAmgHS+poCEdAlNFRRVIZqHV9lChoBkdAcSduEVWS2mgHS+1oCEdAlNFxI4EOiHV9lChoBkdARtVDQZ4wAWgHS/JoCEdAlNHFuivgWXV9lChoBkdAbyYsK9f1H2gHTRQBaAhHQJTS41aW5Yp1fZQoaAZHQGyUf8dgfEJoB00MAWgIR0CU1fS8an76dX2UKGgGR0BRtAcYIjW1aAdL62gIR0CU1lPrfLs9dX2UKGgGR0Bvl7MNc4YKaAdNTQFoCEdAlNjxt+CsfnV9lChoBkdAcXsIkZ75VWgHTSQBaAhHQJTY++rU9ZB1fZQoaAZHQHDjpCjUNKBoB01eAWgIR0CU2ep2ECeVdX2UKGgGR0BORjiwSrYHaAdL02gIR0CU3Ab/ffoBdX2UKGgGR0Bvon9DQZ4waAdNQAFoCEdAlNxGj0th/nV9lChoBkdAcMAaRISUT2gHTQwBaAhHQJTc7kaMrEt1fZQoaAZHQGDKycTakARoB03oA2gIR0CU3WK5kK/mdX2UKGgGR0BwWnjMmnfmaAdNZgFoCEdAlN5eGsV+JHV9lChoBkdAcBTxzq8lHGgHTU0BaAhHQJTeaZDzAet1fZQoaAZHQGwGPLX+VC5oB00YAWgIR0CU3oRujynUdX2UKGgGR0BtUQCMglniaAdNIwFoCEdAlN7CA+Y+jnV9lChoBkdAcM4QZn+Q2mgHTUkBaAhHQJTfmGahHsl1fZQoaAZHQG53DQAuIyloB005AWgIR0CU4Dlbu+h5dX2UKGgGR0ByIz+zdDYzaAdNDwFoCEdAlOBaHoHLR3V9lChoBkdATT0lAu7HyWgHS89oCEdAlOBvV/c32nV9lChoBkdAclXPxhDw6WgHTQ4BaAhHQJTghsoDxLF1fZQoaAZHQHHTNRWLgoBoB00zAmgIR0CU4Yf8/D+BdX2UKGgGR0BwK4BJZntfaAdNUAFoCEdAlOP9kvsZ53V9lChoBkdAcG7kdV/+bWgHTQEBaAhHQJTkBeBxxT91fZQoaAZHQG6yy4FzMidoB00kAWgIR0CU5Ss6q815dX2UKGgGR0BsnLqfOD8MaAdNDAFoCEdAlOVRF/hESnV9lChoBkdAcSvMRpUPx2gHTW4BaAhHQJTl5yNn5BV1fZQoaAZHQHAQhuTA31loB00JAWgIR0CU5h/jKgZkdX2UKGgGR0Bx7WD+R5kcaAdNSAFoCEdAlObkpEx7A3V9lChoBkdAQul4/u9eyGgHS/BoCEdAlOegpKBd2XV9lChoBkdAbjJxAB1cMWgHTTwBaAhHQJToKYKIBR11fZQoaAZHQHDBfVmSQo1oB01GAWgIR0CU6DnkDIRzdX2UKGgGR0Bucs3sHB1taAdNCgFoCEdAlOid8NQTEnVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f2ff953c22b69d2bc0f4c6bc1e3bd18ab0ca8ca4fe37fd5c4e15ebead28e3696
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c1f8198bfd1d2b870d6dcaa751e7a38662c26680db629ea5a56892fd68c994b
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cbb6b2edcdcdb1eb7032aa9f376c7ac2837f6bd885505c3db52460d8997eebc9
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb8b8dc0f28d209aaf9274101745971fe6852a164b5aedcbc3f99254a30a373d
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 268.11261890937067, "std_reward": 18.846080591217852, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-13T23:55:56.242972"}
 
1
+ {"mean_reward": 266.8713092, "std_reward": 12.60344846588321, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-14T08:30:07.323824"}