Upload PPO LunarLander
Browse files- README.md +37 -0
- config.json +1 -0
- moon_robot.zip +3 -0
- moon_robot/_stable_baselines3_version +1 -0
- moon_robot/data +99 -0
- moon_robot/policy.optimizer.pth +3 -0
- moon_robot/policy.pth +3 -0
- moon_robot/pytorch_variables.pth +3 -0
- moon_robot/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -116.58 +/- 34.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a008412f490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a008412f520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a008412f5b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a008412f640>", "_build": "<function ActorCriticPolicy._build at 0x7a008412f6d0>", "forward": "<function ActorCriticPolicy.forward at 0x7a008412f760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a008412f7f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a008412f880>", "_predict": "<function ActorCriticPolicy._predict at 0x7a008412f910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a008412f9a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a008412fa30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a008412fac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0084134540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697291471785564807, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaR4bzUAaI/syvovBGBtzxILwC9hHUHOwAAAAAAAAAAZiIWPqYKhD/q48Y9hG3AvZBNqz7IiuM9AAAAAAAAAAAaMyc9eommPzr78TzVJ4+84iahPYLykrwAAAAAAAAAAGZHA75AHqY/yog2vM3N2buErii8vT7HuwAAAAAAAAAA83/RvbC5lT+V0pI9fignvePGIz2D8BY8AAAAAAAAAACNq9c96v2wP2HZND1xhuQ8vBhtPJIhGj0AAAAAAAAAAHCPYb4/GWY/6sLyvIF5mLwaEBa+uzEnPgAAAAAAAAAAnShdvsqvkD/0fwC9tcCxvGJPwDz6Z+27AAAAAAAAAABgFDK+EFaeP7h87Tx69a28iv7Au7q3aT4AAAAAAAAAAK39WT5oC50/wtfSu2H25jz6l6Q4Kd2BPAAAAAAAAAAAJp7CvRDKgj/W/FO8I9Ncveqr+7xc+Ji8AAAAAAAAAADNGTq+TAaFPzXCHT0NzKa9AqzvPPNdb7wAAAAAAAAAAHO9wT0Z7zA/I/YdvSCpobwgJNu8kkhIPQAAAAAAAAAAZsPpvYJWpz/aO1A6aluJvCGBfzsXrp08AAAAAAAAAADAQQE+yu+bP7FHgruQGei8DDBfPI4omT0AAAAAAAAAALPglL1wI70/ql2DvSZE5Lw1Cz69DvhIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFxtoWYWtWMAWyUTb4BjAF0lEdAknjlG9YfXHV9lChoBkfAXmdQizLOiWgHTegDaAhHQJJ8cOYplSV1fZQoaAZHwFz8/+KjzqdoB03oA2gIR0CSfJ4n4O+adX2UKGgGR0BtwmyVv/BFaAdN+QFoCEdAkoFRkmQbM3V9lChoBkfAUl6+23KB/mgHTegDaAhHQJKJiQlruYx1fZQoaAZHQEBtK7I1cdJoB03oA2gIR0CSlEKbKA8TdX2UKGgGR8BcbAc5sCT2aAdN6ANoCEdAkpg4g7o0RHV9lChoBkfAXRa//NqxkmgHTegDaAhHQJKdO0zCUHJ1fZQoaAZHwFzg8fms/6hoB03oA2gIR0CSn5fFaSs9dX2UKGgGR8Bgk/hbW3BpaAdN6ANoCEdAkqIMVQAMlXV9lChoBkfAWrT531SOzmgHTegDaAhHQJKy5mBe5Wl1fZQoaAZHwFMTIiTt9hJoB03oA2gIR0CSvQw2ETQFdX2UKGgGR0BEKEpiI+GHaAdNGAFoCEdAkr2kMLF4s3V9lChoBkfAYLMmhufmLmgHTegDaAhHQJLAR+DvmYB1fZQoaAZHwFsCaJAMUh5oB03oA2gIR0CSwJqZc9nsdX2UKGgGR8BZ0A08/2TQaAdN6ANoCEdAktn4RqXWv3V9lChoBkfAQA/oTwlSj2gHTegDaAhHQJLdQvexfOV1fZQoaAZHwF8xA4GUwBZoB03oA2gIR0CTCGNcGC7LdX2UKGgGR8BS2MifQKKHaAdN6ANoCEdAkwznY150KnV9lChoBkfAUMVI8QqZt2gHTegDaAhHQJMNJbHIZIh1fZQoaAZHwF5I5OafBepoB03oA2gIR0CTFA4t6HCXdX2UKGgGR8BWRHIZIg/1aAdN6ANoCEdAkxwyteUpu3V9lChoBkfAYy/xIatLc2gHTegDaAhHQJMkXdCVryl1fZQoaAZHwF5DFnqVyFRoB03oA2gIR0CTJ0kxASnMdX2UKGgGR8BdZvTPSlWPaAdN6ANoCEdAkyrzHjp9qnV9lChoBkfAVf3kfcN6PmgHTegDaAhHQJMtKBd2Pkt1fZQoaAZHwFDHxDLKV6hoB03oA2gIR0CTRS2w3YL9dX2UKGgGR8BbmTZg5R0maAdN6ANoCEdAk1a4LkS26XV9lChoBkdAbvTxhlUZN2gHTSoCaAhHQJNXj1+RYA91fZQoaAZHwF5pghKUVzpoB03oA2gIR0CTV+EyckMTdX2UKGgGR8Bb34NutOmBaAdN6ANoCEdAk1qaODJ2dXV9lChoBkfAWbJi9Zid8WgHTegDaAhHQJNa5+2E0zl1fZQoaAZHwFvs0q6OHWVoB03oA2gIR0CTXXFyJbdKdX2UKGgGR8Bd5UXxe9i+aAdN6ANoCEdAk3Ffacqe9XV9lChoBkfAYKcnrpqynmgHTegDaAhHQJOjdKUVzp51fZQoaAZHwFsXisXBP9FoB03oA2gIR0CTo6HzYmLMdX2UKGgGR8BRIz7ALy+YaAdN6ANoCEdAk6h7h3qzJXV9lChoBkdAGW9x6v7m+2gHTegDaAhHQJOun/Khcqx1fZQoaAZHwFzAJsO5J9RoB03oA2gIR0CTtYnJT2nLdX2UKGgGR8BgKJNwiqyXaAdN6ANoCEdAk7f9g0CRwXV9lChoBkfAYNOq3mV7hWgHTegDaAhHQJO7QHkcS5B1fZQoaAZHwFE8KrJbMX9oB03oA2gIR0CTvUmaH9FXdX2UKGgGR0BwFxsyi22HaAdNowFoCEdAk9cAuqWC3HV9lChoBkfAUtGv3ai9I2gHTegDaAhHQJPYgpgCwKV1fZQoaAZHwBNGNrCWNWFoB03oA2gIR0CT486C17Y1dX2UKGgGR8BaS3T3IuGsaAdN6ANoCEdAk+RbiADq4nV9lChoBkfAXu5jwx33YmgHTegDaAhHQJPklxHXmNl1fZQoaAZHwFP6Ln9vS+hoB03oA2gIR0CT5zCjUNKAdX2UKGgGR8BZAQuRLbpNaAdN6ANoCEdAk+eCWu5jIHV9lChoBkfAWr+ez2OAAmgHTegDaAhHQJPpwmXw9aF1fZQoaAZHwFSlW1twaR9oB03oA2gIR0CT7JXa8Hv+dX2UKGgGR8BeO7Bj4HopaAdN6ANoCEdAlCyO32EkB3V9lChoBkfAU9DmYBvJimgHTegDaAhHQJQx8YcebNN1fZQoaAZHwGIDkTYdyT9oB03oA2gIR0CUOVMjNY8udX2UKGgGR8BhCk25xzaLaAdN6ANoCEdAlEKPj81n/XV9lChoBkfAXmajSG8Em2gHTegDaAhHQJRGf9deIEd1fZQoaAZHwFow/9pAUtZoB03oA2gIR0CUS4Ssr/bTdX2UKGgGR8BSTHv6TGHYaAdN6ANoCEdAlE6pr56+nXV9lChoBkfAWq7kfcN6PmgHTegDaAhHQJRnWBPKuCB1fZQoaAZHwFg3Ss8xKxtoB03oA2gIR0CUaSibUgB+dX2UKGgGR8BStRZMcp9aaAdN6ANoCEdAlHbTN6gM+nV9lChoBkfAQafKU3XI2mgHTegDaAhHQJR3dpyp71J1fZQoaAZHwFpEfl6qsEJoB03oA2gIR0CUd7h1klNUdX2UKGgGR8Bh1fKuB+WoaAdN6ANoCEdAlHqU1hsqKHV9lChoBkfAWxziQ1aW5mgHTegDaAhHQJR65BlcyFh1fZQoaAZHwFHYXu3MINVoB03oA2gIR0CUfgUuL740dX2UKGgGR8BaPv7vXsgMaAdN6ANoCEdAlIJJ53Tuv3V9lChoBkfAYt0DxLCemWgHTegDaAhHQJTB1y+6Ae91fZQoaAZHwGHnKxs2vStoB03oA2gIR0CUyQVrRBu5dX2UKGgGR8BBg003wTdtaAdN6ANoCEdAlNI4F3Y+S3V9lChoBkfAYjY1UEPlMmgHTegDaAhHQJTZhL0z0pV1fZQoaAZHwEGHDuSfUWloB03oA2gIR0CU3EnuiN83dX2UKGgGR8BiTPQ6ZH/caAdN6ANoCEdAlN/Vj/dZaHV9lChoBkfAOBOXAuZkTmgHTegDaAhHQJTiEVj7Q9l1fZQoaAZHwFtt+DvmYBxoB03oA2gIR0CU+Lb3Gn4xdX2UKGgGR8Al+3/giu+zaAdN6ANoCEdAlPq0bT+efHV9lChoBkdAP/P+KjzqbGgHS+doCEdAlP9pgw482nV9lChoBkfAWro5p8F6iWgHTegDaAhHQJUMYvIwM6R1fZQoaAZHwE78GcnVoYhoB03oA2gIR0CVDTNmlImPdX2UKGgGR0A+16nBLwnZaAdN6ANoCEdAlQ2GOEM9bHV9lChoBkfAU6sSElE7XGgHTegDaAhHQJURhomG/N91fZQoaAZHwErwTcIqsltoB03oA2gIR0CVEfcuJ1q4dX2UKGgGR8Bc9JTho/RmaAdN6ANoCEdAlRRumJm/WXV9lChoBkfAWpn0PH1e0GgHTegDaAhHQJUXFAVwgkl1fZQoaAZHwF2XfNzKcNJoB03oA2gIR0CVUxB/qgRLdX2UKGgGR8Baj+8wpON6aAdN6ANoCEdAlVeh20Re1XV9lChoBkfAWjU/s3Q2M2gHTegDaAhHQJVeDowEhaF1fZQoaAZHwCEzg0j1PFhoB03oA2gIR0CVZUh7E5yVdX2UKGgGR8BXI/YFqzqsaAdN6ANoCEdAlWgA8SwnpnV9lChoBkfANXzCLuQZGmgHTegDaAhHQJVrgYZVGTd1fZQoaAZHwFLhqT8pCrtoB03oA2gIR0CVirnQ6ZH/dX2UKGgGR8BSRPdRBNVSaAdN6ANoCEdAlY1LCemNznV9lChoBkfAXNe4oZydWmgHTegDaAhHQJWR8OWjXWh1fZQoaAZHwFqsylvZRKpoB03oA2gIR0CVmuPzWf9QdX2UKGgGR8Bb5MVk+X7caAdN6ANoCEdAlZtmAwwj+3V9lChoBkfAXGg9QoCuEGgHTegDaAhHQJWbnlr/Khd1fZQoaAZHwFQoxDb8FZBoB03oA2gIR0CVniwmVqvedX2UKGgGR8BbVCEcsDnvaAdN6ANoCEdAlZ5yRW912nV9lChoBkfAXQtqTKT0QWgHTegDaAhHQJWgxkTYdyV1fZQoaAZHQBg4kRjBl+VoB03oA2gIR0CVo2QXyiEhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
moon_robot.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:880feb904bec6e2d4f67cc755a2cc2ad28b2a1b64adc54345f29bdac7625bafb
|
3 |
+
size 146751
|
moon_robot/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
moon_robot/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a008412f490>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a008412f520>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a008412f5b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a008412f640>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a008412f6d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a008412f760>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a008412f7f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a008412f880>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a008412f910>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a008412f9a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a008412fa30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a008412fac0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a0084134540>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 507904,
|
25 |
+
"_total_timesteps": 500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1697291471785564807,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaR4bzUAaI/syvovBGBtzxILwC9hHUHOwAAAAAAAAAAZiIWPqYKhD/q48Y9hG3AvZBNqz7IiuM9AAAAAAAAAAAaMyc9eommPzr78TzVJ4+84iahPYLykrwAAAAAAAAAAGZHA75AHqY/yog2vM3N2buErii8vT7HuwAAAAAAAAAA83/RvbC5lT+V0pI9fignvePGIz2D8BY8AAAAAAAAAACNq9c96v2wP2HZND1xhuQ8vBhtPJIhGj0AAAAAAAAAAHCPYb4/GWY/6sLyvIF5mLwaEBa+uzEnPgAAAAAAAAAAnShdvsqvkD/0fwC9tcCxvGJPwDz6Z+27AAAAAAAAAABgFDK+EFaeP7h87Tx69a28iv7Au7q3aT4AAAAAAAAAAK39WT5oC50/wtfSu2H25jz6l6Q4Kd2BPAAAAAAAAAAAJp7CvRDKgj/W/FO8I9Ncveqr+7xc+Ji8AAAAAAAAAADNGTq+TAaFPzXCHT0NzKa9AqzvPPNdb7wAAAAAAAAAAHO9wT0Z7zA/I/YdvSCpobwgJNu8kkhIPQAAAAAAAAAAZsPpvYJWpz/aO1A6aluJvCGBfzsXrp08AAAAAAAAAADAQQE+yu+bP7FHgruQGei8DDBfPI4omT0AAAAAAAAAALPglL1wI70/ql2DvSZE5Lw1Cz69DvhIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFxtoWYWtWMAWyUTb4BjAF0lEdAknjlG9YfXHV9lChoBkfAXmdQizLOiWgHTegDaAhHQJJ8cOYplSV1fZQoaAZHwFz8/+KjzqdoB03oA2gIR0CSfJ4n4O+adX2UKGgGR0BtwmyVv/BFaAdN+QFoCEdAkoFRkmQbM3V9lChoBkfAUl6+23KB/mgHTegDaAhHQJKJiQlruYx1fZQoaAZHQEBtK7I1cdJoB03oA2gIR0CSlEKbKA8TdX2UKGgGR8BcbAc5sCT2aAdN6ANoCEdAkpg4g7o0RHV9lChoBkfAXRa//NqxkmgHTegDaAhHQJKdO0zCUHJ1fZQoaAZHwFzg8fms/6hoB03oA2gIR0CSn5fFaSs9dX2UKGgGR8Bgk/hbW3BpaAdN6ANoCEdAkqIMVQAMlXV9lChoBkfAWrT531SOzmgHTegDaAhHQJKy5mBe5Wl1fZQoaAZHwFMTIiTt9hJoB03oA2gIR0CSvQw2ETQFdX2UKGgGR0BEKEpiI+GHaAdNGAFoCEdAkr2kMLF4s3V9lChoBkfAYLMmhufmLmgHTegDaAhHQJLAR+DvmYB1fZQoaAZHwFsCaJAMUh5oB03oA2gIR0CSwJqZc9nsdX2UKGgGR8BZ0A08/2TQaAdN6ANoCEdAktn4RqXWv3V9lChoBkfAQA/oTwlSj2gHTegDaAhHQJLdQvexfOV1fZQoaAZHwF8xA4GUwBZoB03oA2gIR0CTCGNcGC7LdX2UKGgGR8BS2MifQKKHaAdN6ANoCEdAkwznY150KnV9lChoBkfAUMVI8QqZt2gHTegDaAhHQJMNJbHIZIh1fZQoaAZHwF5I5OafBepoB03oA2gIR0CTFA4t6HCXdX2UKGgGR8BWRHIZIg/1aAdN6ANoCEdAkxwyteUpu3V9lChoBkfAYy/xIatLc2gHTegDaAhHQJMkXdCVryl1fZQoaAZHwF5DFnqVyFRoB03oA2gIR0CTJ0kxASnMdX2UKGgGR8BdZvTPSlWPaAdN6ANoCEdAkyrzHjp9qnV9lChoBkfAVf3kfcN6PmgHTegDaAhHQJMtKBd2Pkt1fZQoaAZHwFDHxDLKV6hoB03oA2gIR0CTRS2w3YL9dX2UKGgGR8BbmTZg5R0maAdN6ANoCEdAk1a4LkS26XV9lChoBkdAbvTxhlUZN2gHTSoCaAhHQJNXj1+RYA91fZQoaAZHwF5pghKUVzpoB03oA2gIR0CTV+EyckMTdX2UKGgGR8Bb34NutOmBaAdN6ANoCEdAk1qaODJ2dXV9lChoBkfAWbJi9Zid8WgHTegDaAhHQJNa5+2E0zl1fZQoaAZHwFvs0q6OHWVoB03oA2gIR0CTXXFyJbdKdX2UKGgGR8Bd5UXxe9i+aAdN6ANoCEdAk3Ffacqe9XV9lChoBkfAYKcnrpqynmgHTegDaAhHQJOjdKUVzp51fZQoaAZHwFsXisXBP9FoB03oA2gIR0CTo6HzYmLMdX2UKGgGR8BRIz7ALy+YaAdN6ANoCEdAk6h7h3qzJXV9lChoBkdAGW9x6v7m+2gHTegDaAhHQJOun/Khcqx1fZQoaAZHwFzAJsO5J9RoB03oA2gIR0CTtYnJT2nLdX2UKGgGR8BgKJNwiqyXaAdN6ANoCEdAk7f9g0CRwXV9lChoBkfAYNOq3mV7hWgHTegDaAhHQJO7QHkcS5B1fZQoaAZHwFE8KrJbMX9oB03oA2gIR0CTvUmaH9FXdX2UKGgGR0BwFxsyi22HaAdNowFoCEdAk9cAuqWC3HV9lChoBkfAUtGv3ai9I2gHTegDaAhHQJPYgpgCwKV1fZQoaAZHwBNGNrCWNWFoB03oA2gIR0CT486C17Y1dX2UKGgGR8BaS3T3IuGsaAdN6ANoCEdAk+RbiADq4nV9lChoBkfAXu5jwx33YmgHTegDaAhHQJPklxHXmNl1fZQoaAZHwFP6Ln9vS+hoB03oA2gIR0CT5zCjUNKAdX2UKGgGR8BZAQuRLbpNaAdN6ANoCEdAk+eCWu5jIHV9lChoBkfAWr+ez2OAAmgHTegDaAhHQJPpwmXw9aF1fZQoaAZHwFSlW1twaR9oB03oA2gIR0CT7JXa8Hv+dX2UKGgGR8BeO7Bj4HopaAdN6ANoCEdAlCyO32EkB3V9lChoBkfAU9DmYBvJimgHTegDaAhHQJQx8YcebNN1fZQoaAZHwGIDkTYdyT9oB03oA2gIR0CUOVMjNY8udX2UKGgGR8BhCk25xzaLaAdN6ANoCEdAlEKPj81n/XV9lChoBkfAXmajSG8Em2gHTegDaAhHQJRGf9deIEd1fZQoaAZHwFow/9pAUtZoB03oA2gIR0CUS4Ssr/bTdX2UKGgGR8BSTHv6TGHYaAdN6ANoCEdAlE6pr56+nXV9lChoBkfAWq7kfcN6PmgHTegDaAhHQJRnWBPKuCB1fZQoaAZHwFg3Ss8xKxtoB03oA2gIR0CUaSibUgB+dX2UKGgGR8BStRZMcp9aaAdN6ANoCEdAlHbTN6gM+nV9lChoBkfAQafKU3XI2mgHTegDaAhHQJR3dpyp71J1fZQoaAZHwFpEfl6qsEJoB03oA2gIR0CUd7h1klNUdX2UKGgGR8Bh1fKuB+WoaAdN6ANoCEdAlHqU1hsqKHV9lChoBkfAWxziQ1aW5mgHTegDaAhHQJR65BlcyFh1fZQoaAZHwFHYXu3MINVoB03oA2gIR0CUfgUuL740dX2UKGgGR8BaPv7vXsgMaAdN6ANoCEdAlIJJ53Tuv3V9lChoBkfAYt0DxLCemWgHTegDaAhHQJTB1y+6Ae91fZQoaAZHwGHnKxs2vStoB03oA2gIR0CUyQVrRBu5dX2UKGgGR8BBg003wTdtaAdN6ANoCEdAlNI4F3Y+S3V9lChoBkfAYjY1UEPlMmgHTegDaAhHQJTZhL0z0pV1fZQoaAZHwEGHDuSfUWloB03oA2gIR0CU3EnuiN83dX2UKGgGR8BiTPQ6ZH/caAdN6ANoCEdAlN/Vj/dZaHV9lChoBkfAOBOXAuZkTmgHTegDaAhHQJTiEVj7Q9l1fZQoaAZHwFtt+DvmYBxoB03oA2gIR0CU+Lb3Gn4xdX2UKGgGR8Al+3/giu+zaAdN6ANoCEdAlPq0bT+efHV9lChoBkdAP/P+KjzqbGgHS+doCEdAlP9pgw482nV9lChoBkfAWro5p8F6iWgHTegDaAhHQJUMYvIwM6R1fZQoaAZHwE78GcnVoYhoB03oA2gIR0CVDTNmlImPdX2UKGgGR0A+16nBLwnZaAdN6ANoCEdAlQ2GOEM9bHV9lChoBkfAU6sSElE7XGgHTegDaAhHQJURhomG/N91fZQoaAZHwErwTcIqsltoB03oA2gIR0CVEfcuJ1q4dX2UKGgGR8Bc9JTho/RmaAdN6ANoCEdAlRRumJm/WXV9lChoBkfAWpn0PH1e0GgHTegDaAhHQJUXFAVwgkl1fZQoaAZHwF2XfNzKcNJoB03oA2gIR0CVUxB/qgRLdX2UKGgGR8Baj+8wpON6aAdN6ANoCEdAlVeh20Re1XV9lChoBkfAWjU/s3Q2M2gHTegDaAhHQJVeDowEhaF1fZQoaAZHwCEzg0j1PFhoB03oA2gIR0CVZUh7E5yVdX2UKGgGR8BXI/YFqzqsaAdN6ANoCEdAlWgA8SwnpnV9lChoBkfANXzCLuQZGmgHTegDaAhHQJVrgYZVGTd1fZQoaAZHwFLhqT8pCrtoB03oA2gIR0CVirnQ6ZH/dX2UKGgGR8BSRPdRBNVSaAdN6ANoCEdAlY1LCemNznV9lChoBkfAXNe4oZydWmgHTegDaAhHQJWR8OWjXWh1fZQoaAZHwFqsylvZRKpoB03oA2gIR0CVmuPzWf9QdX2UKGgGR8Bb5MVk+X7caAdN6ANoCEdAlZtmAwwj+3V9lChoBkfAXGg9QoCuEGgHTegDaAhHQJWbnlr/Khd1fZQoaAZHwFQoxDb8FZBoB03oA2gIR0CVniwmVqvedX2UKGgGR8BbVCEcsDnvaAdN6ANoCEdAlZ5yRW912nV9lChoBkfAXQtqTKT0QWgHTegDaAhHQJWgxkTYdyV1fZQoaAZHQBg4kRjBl+VoB03oA2gIR0CVo2QXyiEhdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 124,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.9,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
moon_robot/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51d1fe38d22fc537b4131e0f7e26d3466c32b217dc6ca663db94ab671fd4f8b7
|
3 |
+
size 87929
|
moon_robot/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5a1772cbc6a5fbcf6c40519ab0fe95dd0850d68ec6a9663afbc3ece91189536
|
3 |
+
size 43329
|
moon_robot/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
moon_robot/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (184 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -116.577214, "std_reward": 34.194300095290245, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-14T14:23:37.016721"}
|