|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
class DakitariInstructConfig(PretrainedConfig): |
|
model_type = "dakitari_instruct" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
n_positions=512, |
|
n_embd=768, |
|
n_layer=24, |
|
n_head=8, |
|
n_inner=3072, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
activation_function="gelu", |
|
resid_pdrop=0.1, |
|
embd_pdrop=0.1, |
|
attn_pdrop=0.1, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
adapter_bottleneck=128, |
|
model_name="DakitariInstruct-v1.1", |
|
creator="Quantum Leap AI company", |
|
country="Kenya, Africa", |
|
healthcare_purpose="Assist healthcare professionals and patients with accurate medical information", |
|
**kwargs |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.adapter_bottleneck = adapter_bottleneck |
|
self.model_name = model_name |
|
self.creator = creator |
|
self.country = country |
|
self.healthcare_purpose = healthcare_purpose |
|
super().__init__(**kwargs) |