|
|
from typing import Union |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from ...feature_extraction_utils import BatchFeature |
|
|
from ...image_utils import ImageInput |
|
|
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack |
|
|
from ...tokenization_utils_base import PreTokenizedInput, TextInput |
|
|
from ...utils import logging |
|
|
from ...video_utils import VideoInput |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class PrismaVLProcessorKwargs(ProcessingKwargs, total=False): |
|
|
_defaults = { |
|
|
"text_kwargs": { |
|
|
"padding": False, |
|
|
"return_token_type_ids": False, |
|
|
"return_mm_token_type_ids": False, |
|
|
}, |
|
|
"videos_kwargs": {"return_metadata": True}, |
|
|
} |
|
|
|
|
|
|
|
|
class PrismaVLProcessor(ProcessorMixin): |
|
|
r""" |
|
|
Constructs a PrismaVL processor which wraps a PrismaVL image processor and a Qwen2 tokenizer into a single processor. |
|
|
[`PrismaVLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the |
|
|
[`~PrismaVLProcessor.__call__`] and [`~PrismaVLProcessor.decode`] for more information. |
|
|
Args: |
|
|
image_processor ([`Qwen2VLImageProcessor`], *optional*): |
|
|
The image processor is a required input. |
|
|
tokenizer ([`Qwen2TokenizerFast`], *optional*): |
|
|
The tokenizer is a required input. |
|
|
video_processor ([`PrismaVLVideoProcessor`], *optional*): |
|
|
The video processor is a required input. |
|
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
|
in a chat into a tokenizable string. |
|
|
""" |
|
|
|
|
|
def __init__(self, image_processor=None, tokenizer=None, video_processor=None, chat_template=None, **kwargs): |
|
|
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token |
|
|
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token |
|
|
self.image_token_id = ( |
|
|
tokenizer.image_token_id |
|
|
if getattr(tokenizer, "image_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.image_token) |
|
|
) |
|
|
self.video_token_id = ( |
|
|
tokenizer.video_token_id |
|
|
if getattr(tokenizer, "video_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.video_token) |
|
|
) |
|
|
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template) |
|
|
self.vision_start_token = ( |
|
|
"<|vision_start|>" if not hasattr(tokenizer, "vision_start_token") else tokenizer.vision_start_token |
|
|
) |
|
|
self.vision_end_token = ( |
|
|
"<|vision_end|>" if not hasattr(tokenizer, "vision_end_token") else tokenizer.vision_end_token |
|
|
) |
|
|
self.vision_start_token_id = ( |
|
|
tokenizer.vision_start_token_id |
|
|
if getattr(tokenizer, "vision_start_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.vision_start_token) |
|
|
) |
|
|
self.vision_end_token_id = ( |
|
|
tokenizer.vision_end_token_id |
|
|
if getattr(tokenizer, "vision_end_token_id", None) |
|
|
else tokenizer.convert_tokens_to_ids(self.vision_end_token) |
|
|
) |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
images: ImageInput = None, |
|
|
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None, |
|
|
videos: VideoInput = None, |
|
|
**kwargs: Unpack[PrismaVLProcessorKwargs], |
|
|
) -> BatchFeature: |
|
|
""" |
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
|
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode |
|
|
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to |
|
|
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`. |
|
|
|
|
|
Args: |
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
|
tensor. Both channels-first and channels-last formats are supported. |
|
|
text (`str`, `list[str]`, `list[list[str]]`): |
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
|
videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
|
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch |
|
|
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. |
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
|
|
|
|
Returns: |
|
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
|
`None`). |
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
|
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`. |
|
|
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`. |
|
|
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`. |
|
|
""" |
|
|
output_kwargs = self._merge_kwargs( |
|
|
PrismaVLProcessorKwargs, |
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
|
**kwargs, |
|
|
) |
|
|
if images is not None: |
|
|
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"]) |
|
|
image_grid_thw = image_inputs["image_grid_thw"] |
|
|
else: |
|
|
image_inputs = {} |
|
|
image_grid_thw = None |
|
|
|
|
|
if videos is not None: |
|
|
videos_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"]) |
|
|
video_grid_thw = videos_inputs["video_grid_thw"] |
|
|
|
|
|
if "return_metadata" not in kwargs: |
|
|
video_metadata = videos_inputs.pop("video_metadata") |
|
|
else: |
|
|
video_metadata = videos_inputs["video_metadata"] |
|
|
else: |
|
|
videos_inputs = {} |
|
|
video_grid_thw = None |
|
|
|
|
|
if not isinstance(text, list): |
|
|
text = [text] |
|
|
|
|
|
text = text.copy() |
|
|
if image_grid_thw is not None: |
|
|
merge_length = self.image_processor.merge_size**2 |
|
|
index = 0 |
|
|
for i in range(len(text)): |
|
|
while self.image_token in text[i]: |
|
|
num_image_tokens = image_grid_thw[index].prod() // merge_length |
|
|
text[i] = text[i].replace(self.image_token, "<|placeholder|>" * num_image_tokens, 1) |
|
|
index += 1 |
|
|
text[i] = text[i].replace("<|placeholder|>", self.image_token) |
|
|
|
|
|
if video_grid_thw is not None: |
|
|
merge_length = self.video_processor.merge_size**2 |
|
|
index = 0 |
|
|
for i in range(len(text)): |
|
|
while self.video_token in text[i]: |
|
|
metadata = video_metadata[index] |
|
|
if metadata.fps is None: |
|
|
logger.warning_once( |
|
|
"PrismaVL requires frame timestamps to construct prompts, but the `fps` of the input video could not be inferred. " |
|
|
"Probably `video_metadata` was missing from inputs and you passed pre-sampled frames. " |
|
|
"Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results." |
|
|
) |
|
|
metadata.fps = 24 if metadata.fps is None else metadata.fps |
|
|
|
|
|
|
|
|
curr_timestamp = self._calculate_timestamps( |
|
|
metadata.frames_indices, |
|
|
metadata.fps, |
|
|
self.video_processor.merge_size, |
|
|
) |
|
|
|
|
|
video_placeholder = "" |
|
|
frame_seqlen = video_grid_thw[index][1:].prod() // merge_length |
|
|
for frame_idx in range(video_grid_thw[index][0]): |
|
|
curr_time = curr_timestamp[frame_idx] |
|
|
video_placeholder += f"<{curr_time:.1f} seconds>" |
|
|
video_placeholder += ( |
|
|
self.vision_start_token + "<|placeholder|>" * frame_seqlen + self.vision_end_token |
|
|
) |
|
|
if f"{self.vision_start_token}{self.video_token}{self.vision_end_token}" in text[i]: |
|
|
text[i] = text[i].replace( |
|
|
f"{self.vision_start_token}{self.video_token}{self.vision_end_token}", video_placeholder, 1 |
|
|
) |
|
|
else: |
|
|
|
|
|
text[i] = text[i].replace(self.video_token, video_placeholder, 1) |
|
|
index += 1 |
|
|
|
|
|
text[i] = text[i].replace("<|placeholder|>", self.video_token) |
|
|
|
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) |
|
|
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None) |
|
|
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) |
|
|
self._check_special_mm_tokens(text, text_inputs, modalities=["image", "video"]) |
|
|
|
|
|
if return_mm_token_type_ids: |
|
|
array_ids = np.array(text_inputs["input_ids"]) |
|
|
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"]) |
|
|
mm_token_type_ids[array_ids == self.image_token_id] = 1 |
|
|
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist() |
|
|
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors) |
|
|
|
|
|
def _get_num_multimodal_tokens(self, image_sizes=None, video_sizes=None, **kwargs): |
|
|
""" |
|
|
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes. |
|
|
Args: |
|
|
image_sizes (`list[list[int]]`, *optional*): |
|
|
The input sizes formatted as (height, width) per each image. |
|
|
video_sizes (`list[list[int]]`, *optional*): |
|
|
The input sizes formatted as (num_frames, height, width) per each video. |
|
|
Returns: |
|
|
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided |
|
|
input modalities, along with other useful data. |
|
|
""" |
|
|
|
|
|
vision_data = {} |
|
|
if image_sizes is not None: |
|
|
images_kwargs = PrismaVLProcessorKwargs._defaults.get("images_kwargs", {}) |
|
|
images_kwargs.update(kwargs) |
|
|
merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size |
|
|
|
|
|
num_image_patches = [ |
|
|
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs) |
|
|
for image_size in image_sizes |
|
|
] |
|
|
num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches] |
|
|
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches}) |
|
|
|
|
|
if video_sizes is not None: |
|
|
videos_kwargs = PrismaVLProcessorKwargs._defaults.get("videos_kwargs", {}) |
|
|
videos_kwargs.update(kwargs) |
|
|
num_video_patches = [ |
|
|
self.video_processor.get_number_of_video_patches(*video_size, videos_kwargs) |
|
|
for video_size in video_sizes |
|
|
] |
|
|
num_video_tokens = [(num_patches // merge_size**2) for num_patches in num_video_patches] |
|
|
vision_data["num_video_tokens"] = num_video_tokens |
|
|
|
|
|
return MultiModalData(**vision_data) |
|
|
|
|
|
def post_process_image_text_to_text( |
|
|
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs |
|
|
): |
|
|
""" |
|
|
Post-process the output of the model to decode the text. |
|
|
|
|
|
Args: |
|
|
generated_outputs (`torch.Tensor` or `np.ndarray`): |
|
|
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` |
|
|
or `(sequence_length,)`. |
|
|
skip_special_tokens (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. |
|
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
|
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method. |
|
|
**kwargs: |
|
|
Additional arguments to be passed to the tokenizer's `batch_decode method`. |
|
|
|
|
|
Returns: |
|
|
`list[str]`: The decoded text. |
|
|
""" |
|
|
return self.tokenizer.batch_decode( |
|
|
generated_outputs, |
|
|
skip_special_tokens=skip_special_tokens, |
|
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
def _calculate_timestamps(self, indices: Union[list[int], np.ndarray], video_fps: float, merge_size: int = 2): |
|
|
if not isinstance(indices, list): |
|
|
indices = indices.tolist() |
|
|
if len(indices) % merge_size != 0: |
|
|
indices.extend(indices[-1] for _ in range(merge_size - len(indices) % merge_size)) |
|
|
timestamps = [idx / video_fps for idx in indices] |
|
|
|
|
|
|
|
|
timestamps = [ |
|
|
(timestamps[i] + timestamps[i + merge_size - 1]) / 2 for i in range(0, len(timestamps), merge_size) |
|
|
] |
|
|
return timestamps |
|
|
|
|
|
|
|
|
__all__ = ["PrismaVLProcessor"] |
|
|
|