Prisma-VL-8B / processing.py
ehartford's picture
Upload folder using huggingface_hub
5154f51 verified
from typing import Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
from ...video_utils import VideoInput
logger = logging.get_logger(__name__)
class PrismaVLProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_token_type_ids": False,
"return_mm_token_type_ids": False,
},
"videos_kwargs": {"return_metadata": True},
}
class PrismaVLProcessor(ProcessorMixin):
r"""
Constructs a PrismaVL processor which wraps a PrismaVL image processor and a Qwen2 tokenizer into a single processor.
[`PrismaVLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~PrismaVLProcessor.__call__`] and [`~PrismaVLProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
video_processor ([`PrismaVLVideoProcessor`], *optional*):
The video processor is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
def __init__(self, image_processor=None, tokenizer=None, video_processor=None, chat_template=None, **kwargs):
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
self.image_token_id = (
tokenizer.image_token_id
if getattr(tokenizer, "image_token_id", None)
else tokenizer.convert_tokens_to_ids(self.image_token)
)
self.video_token_id = (
tokenizer.video_token_id
if getattr(tokenizer, "video_token_id", None)
else tokenizer.convert_tokens_to_ids(self.video_token)
)
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
self.vision_start_token = (
"<|vision_start|>" if not hasattr(tokenizer, "vision_start_token") else tokenizer.vision_start_token
)
self.vision_end_token = (
"<|vision_end|>" if not hasattr(tokenizer, "vision_end_token") else tokenizer.vision_end_token
)
self.vision_start_token_id = (
tokenizer.vision_start_token_id
if getattr(tokenizer, "vision_start_token_id", None)
else tokenizer.convert_tokens_to_ids(self.vision_start_token)
)
self.vision_end_token_id = (
tokenizer.vision_end_token_id
if getattr(tokenizer, "vision_end_token_id", None)
else tokenizer.convert_tokens_to_ids(self.vision_end_token)
)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
videos: VideoInput = None,
**kwargs: Unpack[PrismaVLProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
PrismaVLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
if videos is not None:
videos_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"])
video_grid_thw = videos_inputs["video_grid_thw"]
# If user has not requested video metadata, pop it
if "return_metadata" not in kwargs:
video_metadata = videos_inputs.pop("video_metadata")
else:
video_metadata = videos_inputs["video_metadata"]
else:
videos_inputs = {}
video_grid_thw = None
if not isinstance(text, list):
text = [text]
text = text.copy() # below lines change text in-place
if image_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
num_image_tokens = image_grid_thw[index].prod() // merge_length
text[i] = text[i].replace(self.image_token, "<|placeholder|>" * num_image_tokens, 1)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if video_grid_thw is not None:
merge_length = self.video_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.video_token in text[i]:
metadata = video_metadata[index]
if metadata.fps is None:
logger.warning_once(
"PrismaVL requires frame timestamps to construct prompts, but the `fps` of the input video could not be inferred. "
"Probably `video_metadata` was missing from inputs and you passed pre-sampled frames. "
"Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results."
)
metadata.fps = 24 if metadata.fps is None else metadata.fps
# if timestamps are not provided, calculate them
curr_timestamp = self._calculate_timestamps(
metadata.frames_indices,
metadata.fps,
self.video_processor.merge_size,
)
video_placeholder = ""
frame_seqlen = video_grid_thw[index][1:].prod() // merge_length
for frame_idx in range(video_grid_thw[index][0]):
curr_time = curr_timestamp[frame_idx]
video_placeholder += f"<{curr_time:.1f} seconds>"
video_placeholder += (
self.vision_start_token + "<|placeholder|>" * frame_seqlen + self.vision_end_token
)
if f"{self.vision_start_token}{self.video_token}{self.vision_end_token}" in text[i]:
text[i] = text[i].replace(
f"{self.vision_start_token}{self.video_token}{self.vision_end_token}", video_placeholder, 1
)
else:
# vllm may input video token directly
text[i] = text[i].replace(self.video_token, video_placeholder, 1)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
self._check_special_mm_tokens(text, text_inputs, modalities=["image", "video"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, video_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
video_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (num_frames, height, width) per each video.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = PrismaVLProcessorKwargs._defaults.get("images_kwargs", {})
images_kwargs.update(kwargs)
merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size
num_image_patches = [
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
for image_size in image_sizes
]
num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
if video_sizes is not None:
videos_kwargs = PrismaVLProcessorKwargs._defaults.get("videos_kwargs", {})
videos_kwargs.update(kwargs)
num_video_patches = [
self.video_processor.get_number_of_video_patches(*video_size, videos_kwargs)
for video_size in video_sizes
]
num_video_tokens = [(num_patches // merge_size**2) for num_patches in num_video_patches]
vision_data["num_video_tokens"] = num_video_tokens
return MultiModalData(**vision_data)
def post_process_image_text_to_text(
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`list[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
def _calculate_timestamps(self, indices: Union[list[int], np.ndarray], video_fps: float, merge_size: int = 2):
if not isinstance(indices, list):
indices = indices.tolist()
if len(indices) % merge_size != 0:
indices.extend(indices[-1] for _ in range(merge_size - len(indices) % merge_size))
timestamps = [idx / video_fps for idx in indices]
# @JJJYmmm frames are merged by self.merge_size, \
# so we need to average the timestamps between the first/last frame within the temporal patch
timestamps = [
(timestamps[i] + timestamps[i + merge_size - 1]) / 2 for i in range(0, len(timestamps), merge_size)
]
return timestamps
__all__ = ["PrismaVLProcessor"]