|
|
from collections.abc import Callable |
|
|
from dataclasses import dataclass |
|
|
from typing import Any, Optional, Union |
|
|
import math |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.masking_utils import create_causal_mask |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, is_torchdynamo_compiling |
|
|
from transformers.utils.generic import check_model_inputs |
|
|
from .configuration import PrismaVLConfig, PrismaVLTextConfig, PrismaVLVisionConfig |
|
|
|
|
|
|
|
|
class PrismaVLVisionMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) |
|
|
self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, hidden_state): |
|
|
return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state))) |
|
|
|
|
|
|
|
|
class PrismaVLVisionPatchEmbed(nn.Module): |
|
|
def __init__(self, config) -> None: |
|
|
super().__init__() |
|
|
self.patch_size = config.patch_size |
|
|
self.temporal_patch_size = config.temporal_patch_size |
|
|
self.in_channels = config.in_channels |
|
|
self.embed_dim = config.hidden_size |
|
|
|
|
|
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size] |
|
|
self.proj = nn.Conv3d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=True) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
target_dtype = self.proj.weight.dtype |
|
|
hidden_states = hidden_states.view( |
|
|
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size |
|
|
) |
|
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class PrismaVLVisionRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
|
super().__init__() |
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
|
freqs = torch.outer(seq, self.inv_freq) |
|
|
return freqs |
|
|
|
|
|
|
|
|
class PrismaVLVisionPatchMerger(nn.Module): |
|
|
def __init__(self, config: PrismaVLVisionConfig, use_postshuffle_norm=False) -> None: |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size * (config.spatial_merge_size**2) |
|
|
self.use_postshuffle_norm = use_postshuffle_norm |
|
|
self.norm = nn.LayerNorm(self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6) |
|
|
self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size) |
|
|
self.act_fn = nn.GELU() |
|
|
self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = self.norm(x.view(-1, self.hidden_size) if self.use_postshuffle_norm else x).view(-1, self.hidden_size) |
|
|
x = self.linear_fc2(self.act_fn(self.linear_fc1(x))) |
|
|
return x |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb_vision( |
|
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
orig_q_dtype = q.dtype |
|
|
orig_k_dtype = k.dtype |
|
|
q, k = q.float(), k.float() |
|
|
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
q_embed = q_embed.to(orig_q_dtype) |
|
|
k_embed = k_embed.to(orig_k_dtype) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class PrismaVLVisionAttention(nn.Module): |
|
|
def __init__(self, config: PrismaVLVisionConfig) -> None: |
|
|
super().__init__() |
|
|
self.dim = config.hidden_size |
|
|
self.num_heads = config.num_heads |
|
|
self.head_dim = self.dim // self.num_heads |
|
|
self.num_key_value_groups = 1 |
|
|
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True) |
|
|
self.proj = nn.Linear(self.dim, self.dim) |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.config = config |
|
|
self.attention_dropout = 0.0 |
|
|
self.is_causal = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
seq_length = hidden_states.shape[0] |
|
|
query_states, key_states, value_states = ( |
|
|
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
|
) |
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin) |
|
|
|
|
|
query_states = query_states.transpose(0, 1).unsqueeze(0) |
|
|
key_states = key_states.transpose(0, 1).unsqueeze(0) |
|
|
value_states = value_states.transpose(0, 1).unsqueeze(0) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max() |
|
|
attn_output, _ = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
cu_seq_lens_q=cu_seqlens, |
|
|
cu_seq_lens_k=cu_seqlens, |
|
|
max_length_q=max_seqlen, |
|
|
max_length_k=max_seqlen, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
) |
|
|
else: |
|
|
|
|
|
lengths = cu_seqlens[1:] - cu_seqlens[:-1] |
|
|
splits = [ |
|
|
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states) |
|
|
] |
|
|
|
|
|
attn_outputs = [ |
|
|
attention_interface( |
|
|
self, |
|
|
q, |
|
|
k, |
|
|
v, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
)[0] |
|
|
for q, k, v in zip(*splits) |
|
|
] |
|
|
attn_output = torch.cat(attn_outputs, dim=1) |
|
|
|
|
|
attn_output = attn_output.reshape(seq_length, -1).contiguous() |
|
|
attn_output = self.proj(attn_output) |
|
|
return attn_output |
|
|
|
|
|
|
|
|
class PrismaVLVisionBlock(GradientCheckpointingLayer): |
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None: |
|
|
super().__init__() |
|
|
self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6) |
|
|
self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6) |
|
|
self.attn = PrismaVLVisionAttention(config=config) |
|
|
self.mlp = PrismaVLVisionMLP(config=config) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: Optional[torch.Tensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
hidden_states = hidden_states + self.attn( |
|
|
self.norm1(hidden_states), |
|
|
cu_seqlens=cu_seqlens, |
|
|
rotary_pos_emb=rotary_pos_emb, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class PrismaVLTextRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, config: PrismaVLTextConfig, device=None): |
|
|
super().__init__() |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
|
|
|
self.rope_type = self.config.rope_scaling.get("rope_type", "default") if self.config.rope_scaling else "default" |
|
|
rope_init_fn: Callable = self.compute_default_rope_parameters |
|
|
if self.rope_type != "default": |
|
|
rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device) |
|
|
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = inv_freq |
|
|
|
|
|
self.mrope_section = config.rope_scaling.get("mrope_section", [24, 20, 20]) if config.rope_scaling else [24, 20, 20] |
|
|
|
|
|
@staticmethod |
|
|
def compute_default_rope_parameters( |
|
|
config: Optional[PrismaVLTextConfig] = None, |
|
|
device: Optional["torch.device"] = None, |
|
|
seq_len: Optional[int] = None, |
|
|
) -> tuple["torch.Tensor", float]: |
|
|
""" |
|
|
Computes the inverse frequencies according to the original RoPE implementation |
|
|
Args: |
|
|
config ([`~transformers.PreTrainedConfig`]): |
|
|
The model configuration. |
|
|
device (`torch.device`): |
|
|
The device to use for initialization of the inverse frequencies. |
|
|
seq_len (`int`, *optional*): |
|
|
The current sequence length. Unused for this type of RoPE. |
|
|
Returns: |
|
|
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the |
|
|
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE). |
|
|
""" |
|
|
base = config.rope_theta |
|
|
dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads |
|
|
|
|
|
attention_factor = 1.0 |
|
|
|
|
|
|
|
|
inv_freq = 1.0 / ( |
|
|
base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim) |
|
|
) |
|
|
return inv_freq, attention_factor |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
|
|
|
|
|
|
if position_ids.ndim == 2: |
|
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) |
|
|
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) |
|
|
position_ids_expanded = position_ids[:, :, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) |
|
|
freqs = self.apply_interleaved_mrope(freqs, self.mrope_section) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def apply_interleaved_mrope(self, freqs, mrope_section): |
|
|
"""Apply interleaved MRoPE to 3D rotary embeddings. |
|
|
Reorganizes frequency layout from chunked [TTT...HHH...WWW] to |
|
|
interleaved [THTHWHTHW...TT], preserving frequency continuity. |
|
|
args: |
|
|
x: (3, bs, seq_len, head_dim // 2) |
|
|
mrope_section: (3,) |
|
|
returns: |
|
|
x_t: (bs, seq_len, head_dim // 2) |
|
|
""" |
|
|
freqs_t = freqs[0] |
|
|
for dim, offset in enumerate((1, 2), start=1): |
|
|
length = mrope_section[dim] * 3 |
|
|
idx = slice(offset, length, 3) |
|
|
freqs_t[..., idx] = freqs[dim, ..., idx] |
|
|
return freqs_t |
|
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class PrismaVLTextRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps: float = 1e-6) -> None: |
|
|
""" |
|
|
PrismaVLTextRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class PrismaVLTextAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: PrismaVLTextConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.layer_type = config.layer_types[layer_idx] if hasattr(config, "layer_types") else None |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
|
) |
|
|
self.q_norm = PrismaVLTextRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.k_norm = PrismaVLTextRMSNorm( |
|
|
self.head_dim, eps=config.rms_norm_eps |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_values is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class PrismaVLTextMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
class PrismaVLTextDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: PrismaVLTextConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = PrismaVLTextAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = PrismaVLTextMLP(config) |
|
|
self.input_layernorm = PrismaVLTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = PrismaVLTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> torch.Tensor: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class PrismaVLModelOutputWithPast(ModelOutput): |
|
|
""" |
|
|
Base class for Llava outputs, with hidden states and attentions. |
|
|
""" |
|
|
r""" |
|
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
|
`past_key_values` input) to speed up sequential decoding. |
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
|
The rope index difference between sequence length and multimodal rope. |
|
|
""" |
|
|
|
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
|
past_key_values: Optional[Cache] = None |
|
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None |
|
|
attentions: Optional[tuple[torch.FloatTensor]] = None |
|
|
rope_deltas: Optional[torch.LongTensor] = None |
|
|
|
|
|
|
|
|
class PrismaVLPreTrainedModel(PreTrainedModel): |
|
|
config: PrismaVLConfig |
|
|
base_model_prefix = "model" |
|
|
input_modalities = ["image", "video", "text"] |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["PrismaVLTextDecoderLayer", "PrismaVLVisionBlock"] |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
|
|
|
_can_compile_fullgraph = True |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"hidden_states": PrismaVLTextDecoderLayer, |
|
|
"attentions": PrismaVLTextAttention, |
|
|
} |
|
|
|
|
|
|
|
|
class PrismaVLVisionModel(PrismaVLPreTrainedModel): |
|
|
config: PrismaVLVisionConfig |
|
|
_no_split_modules = ["PrismaVLVisionBlock"] |
|
|
|
|
|
def __init__(self, config, *inputs, **kwargs) -> None: |
|
|
super().__init__(config, *inputs, **kwargs) |
|
|
self.spatial_merge_size = config.spatial_merge_size |
|
|
self.patch_size = config.patch_size |
|
|
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size |
|
|
|
|
|
self.patch_embed = PrismaVLVisionPatchEmbed( |
|
|
config=config, |
|
|
) |
|
|
|
|
|
self.pos_embed = nn.Embedding(config.num_position_embeddings, config.hidden_size) |
|
|
self.num_grid_per_side = int(config.num_position_embeddings**0.5) |
|
|
|
|
|
head_dim = config.hidden_size // config.num_heads |
|
|
self.rotary_pos_emb = PrismaVLVisionRotaryEmbedding(head_dim // 2) |
|
|
|
|
|
self.blocks = nn.ModuleList([PrismaVLVisionBlock(config) for _ in range(config.depth)]) |
|
|
self.merger = PrismaVLVisionPatchMerger( |
|
|
config=config, |
|
|
use_postshuffle_norm=False, |
|
|
) |
|
|
|
|
|
self.deepstack_visual_indexes = config.deepstack_visual_indexes |
|
|
self.deepstack_merger_list = nn.ModuleList( |
|
|
[ |
|
|
PrismaVLVisionPatchMerger( |
|
|
config=config, |
|
|
use_postshuffle_norm=True, |
|
|
) |
|
|
for _ in range(len(config.deepstack_visual_indexes)) |
|
|
] |
|
|
) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: |
|
|
merge_size = self.spatial_merge_size |
|
|
|
|
|
max_hw = int(grid_thw[:, 1:].max().item()) |
|
|
freq_table = self.rotary_pos_emb(max_hw) |
|
|
device = freq_table.device |
|
|
|
|
|
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item()) |
|
|
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device) |
|
|
|
|
|
offset = 0 |
|
|
for num_frames, height, width in grid_thw: |
|
|
merged_h, merged_w = height // merge_size, width // merge_size |
|
|
|
|
|
block_rows = torch.arange(merged_h, device=device) |
|
|
block_cols = torch.arange(merged_w, device=device) |
|
|
intra_row = torch.arange(merge_size, device=device) |
|
|
intra_col = torch.arange(merge_size, device=device) |
|
|
|
|
|
|
|
|
row_idx = block_rows[:, None, None, None] * merge_size + intra_row[None, None, :, None] |
|
|
col_idx = block_cols[None, :, None, None] * merge_size + intra_col[None, None, None, :] |
|
|
|
|
|
row_idx = row_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1) |
|
|
col_idx = col_idx.expand(merged_h, merged_w, merge_size, merge_size).reshape(-1) |
|
|
|
|
|
coords = torch.stack((row_idx, col_idx), dim=-1) |
|
|
|
|
|
if num_frames > 1: |
|
|
coords = coords.repeat(num_frames, 1) |
|
|
|
|
|
num_tokens = coords.shape[0] |
|
|
pos_ids[offset : offset + num_tokens] = coords |
|
|
offset += num_tokens |
|
|
|
|
|
embeddings = freq_table[pos_ids] |
|
|
embeddings = embeddings.flatten(1) |
|
|
return embeddings |
|
|
|
|
|
def fast_pos_embed_interpolate(self, grid_thw): |
|
|
grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2] |
|
|
device = grid_thw.device |
|
|
|
|
|
idx_list = [[] for _ in range(4)] |
|
|
weight_list = [[] for _ in range(4)] |
|
|
|
|
|
for t, h, w in zip(grid_ts, grid_hs, grid_ws): |
|
|
h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h) |
|
|
w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w) |
|
|
|
|
|
h_idxs_floor = h_idxs.int() |
|
|
w_idxs_floor = w_idxs.int() |
|
|
h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) |
|
|
w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1) |
|
|
|
|
|
dh = h_idxs - h_idxs_floor |
|
|
dw = w_idxs - w_idxs_floor |
|
|
|
|
|
base_h = h_idxs_floor * self.num_grid_per_side |
|
|
base_h_ceil = h_idxs_ceil * self.num_grid_per_side |
|
|
|
|
|
indices = [ |
|
|
(base_h[None].T + w_idxs_floor[None]).flatten(), |
|
|
(base_h[None].T + w_idxs_ceil[None]).flatten(), |
|
|
(base_h_ceil[None].T + w_idxs_floor[None]).flatten(), |
|
|
(base_h_ceil[None].T + w_idxs_ceil[None]).flatten(), |
|
|
] |
|
|
|
|
|
weights = [ |
|
|
((1 - dh)[None].T * (1 - dw)[None]).flatten(), |
|
|
((1 - dh)[None].T * dw[None]).flatten(), |
|
|
(dh[None].T * (1 - dw)[None]).flatten(), |
|
|
(dh[None].T * dw[None]).flatten(), |
|
|
] |
|
|
|
|
|
for i in range(4): |
|
|
idx_list[i].extend(indices[i].tolist()) |
|
|
weight_list[i].extend(weights[i].tolist()) |
|
|
|
|
|
idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=device) |
|
|
weight_tensor = torch.tensor(weight_list, dtype=self.pos_embed.weight.dtype, device=device) |
|
|
pos_embeds = self.pos_embed(idx_tensor).to(device) * weight_tensor[:, :, None] |
|
|
patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3] |
|
|
|
|
|
patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)]) |
|
|
|
|
|
patch_pos_embeds_permute = [] |
|
|
merge_size = self.config.spatial_merge_size |
|
|
for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws): |
|
|
pos_embed = pos_embed.repeat(t, 1) |
|
|
pos_embed = ( |
|
|
pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1) |
|
|
.permute(0, 1, 3, 2, 4, 5) |
|
|
.flatten(0, 4) |
|
|
) |
|
|
patch_pos_embeds_permute.append(pos_embed) |
|
|
patch_pos_embeds = torch.cat(patch_pos_embeds_permute) |
|
|
return patch_pos_embeds |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): |
|
|
The final hidden states of the model. |
|
|
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: hidden_states. |
|
|
""" |
|
|
hidden_states = self.patch_embed(hidden_states) |
|
|
|
|
|
pos_embeds = self.fast_pos_embed_interpolate(grid_thw) |
|
|
hidden_states = hidden_states + pos_embeds |
|
|
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
|
|
|
|
seq_len, _ = hidden_states.size() |
|
|
hidden_states = hidden_states.reshape(seq_len, -1) |
|
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) |
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( |
|
|
dim=0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
|
) |
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
|
|
deepstack_feature_lists = [] |
|
|
for layer_num, blk in enumerate(self.blocks): |
|
|
hidden_states = blk( |
|
|
hidden_states, |
|
|
cu_seqlens=cu_seqlens, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
if layer_num in self.deepstack_visual_indexes: |
|
|
deepstack_feature = self.deepstack_merger_list[self.deepstack_visual_indexes.index(layer_num)]( |
|
|
hidden_states |
|
|
) |
|
|
deepstack_feature_lists.append(deepstack_feature) |
|
|
|
|
|
hidden_states = self.merger(hidden_states) |
|
|
|
|
|
return hidden_states, deepstack_feature_lists |
|
|
|
|
|
|
|
|
class PrismaVLTextModel(PrismaVLPreTrainedModel): |
|
|
""" |
|
|
Text part of PrismaVL, not a pure text-only model, as DeepStack integrates visual features into the early hidden states. |
|
|
""" |
|
|
config: PrismaVLTextConfig |
|
|
_no_split_modules = ["PrismaVLTextDecoderLayer"] |
|
|
|
|
|
def __init__(self, config: PrismaVLTextConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[PrismaVLTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = PrismaVLTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = PrismaVLTextRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@check_model_inputs |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
|
|
|
visual_pos_masks: Optional[torch.Tensor] = None, |
|
|
deepstack_visual_embeds: Optional[list[torch.Tensor]] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Union[tuple, BaseModelOutputWithPast]: |
|
|
r""" |
|
|
visual_pos_masks (`torch.Tensor` of shape `(batch_size, seqlen)`, *optional*): |
|
|
The mask of the visual positions. |
|
|
deepstack_visual_embeds (`list[torch.Tensor]`, *optional*): |
|
|
The deepstack visual embeddings. The shape is (num_layers, visual_seqlen, embed_dim). |
|
|
The feature is extracted from the different visual encoder layers, and fed to the decoder |
|
|
hidden states. It's from the paper DeepStack(https://arxiv.org/abs/2406.04334). |
|
|
""" |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
|
|
|
if use_cache and past_key_values is None and not torch.jit.is_tracing(): |
|
|
past_key_values = DynamicCache(config=self.config) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) |
|
|
elif position_ids.ndim == 2: |
|
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) |
|
|
|
|
|
if position_ids.ndim == 3 and position_ids.shape[0] == 4: |
|
|
text_position_ids = position_ids[0] |
|
|
position_ids = position_ids[1:] |
|
|
else: |
|
|
text_position_ids = position_ids[0] |
|
|
|
|
|
attention_mask = create_causal_mask( |
|
|
config=self.config, |
|
|
input_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
cache_position=cache_position, |
|
|
past_key_values=past_key_values, |
|
|
position_ids=text_position_ids, |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
for layer_idx, decoder_layer in enumerate(self.layers): |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=text_position_ids, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = layer_outputs |
|
|
|
|
|
|
|
|
if deepstack_visual_embeds is not None and layer_idx in range(len(deepstack_visual_embeds)): |
|
|
hidden_states = self._deepstack_process( |
|
|
hidden_states, |
|
|
visual_pos_masks, |
|
|
deepstack_visual_embeds[layer_idx], |
|
|
) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
def _deepstack_process( |
|
|
self, hidden_states: torch.Tensor, visual_pos_masks: torch.Tensor, visual_embeds: torch.Tensor |
|
|
): |
|
|
visual_pos_masks = visual_pos_masks.to(hidden_states.device) |
|
|
visual_embeds = visual_embeds.to(hidden_states.device, hidden_states.dtype) |
|
|
hidden_states = hidden_states.clone() |
|
|
local_this = hidden_states[visual_pos_masks, :] + visual_embeds |
|
|
hidden_states[visual_pos_masks, :] = local_this |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class PrismaVLModel(PrismaVLPreTrainedModel): |
|
|
base_model_prefix = "" |
|
|
_checkpoint_conversion_mapping = {} |
|
|
|
|
|
accepts_loss_kwargs = False |
|
|
config: PrismaVLConfig |
|
|
_no_split_modules = ["PrismaVLTextDecoderLayer", "PrismaVLVisionBlock"] |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.visual = PrismaVLVisionModel._from_config(config.vision_config) |
|
|
self.language_model = PrismaVLTextModel._from_config(config.text_config) |
|
|
self.rope_deltas = None |
|
|
|
|
|
|
|
|
|
|
|
self.n_bits = 16 |
|
|
self.n_uncertainty_levels = 2 ** self.n_bits |
|
|
|
|
|
|
|
|
|
|
|
d_model = config.text_config.hidden_size |
|
|
self.uncertainty_embeddings = nn.Embedding(self.n_uncertainty_levels, d_model) |
|
|
|
|
|
|
|
|
|
|
|
std = config.text_config.initializer_range |
|
|
self.uncertainty_embeddings.weight.data.normal_(mean=0.0, std=std) |
|
|
|
|
|
|
|
|
|
|
|
self.register_buffer('prev_uncertainty_code', None) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def reset_uncertainty(self): |
|
|
"""Reset uncertainty cache (useful between generation runs).""" |
|
|
self.prev_uncertainty_code = None |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.language_model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.language_model |
|
|
|
|
|
def get_rope_index( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Different from the original implementation, PrismaVL use timestamps rather than absolute time position ids.""" |
|
|
|
|
|
|
|
|
if video_grid_thw is not None: |
|
|
video_grid_thw = torch.repeat_interleave(video_grid_thw, video_grid_thw[:, 0], dim=0) |
|
|
video_grid_thw[:, 0] = 1 |
|
|
|
|
|
spatial_merge_size = self.config.vision_config.spatial_merge_size |
|
|
image_token_id = self.config.image_token_id |
|
|
video_token_id = self.config.video_token_id |
|
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
mrope_position_deltas = [] |
|
|
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): |
|
|
total_input_ids = input_ids |
|
|
if attention_mask is None: |
|
|
attention_mask = torch.ones_like(total_input_ids) |
|
|
position_ids = torch.ones( |
|
|
3, |
|
|
input_ids.shape[0], |
|
|
input_ids.shape[1], |
|
|
dtype=input_ids.dtype, |
|
|
device=input_ids.device, |
|
|
) |
|
|
image_index, video_index = 0, 0 |
|
|
attention_mask = attention_mask.to(total_input_ids.device) |
|
|
for i, input_ids in enumerate(total_input_ids): |
|
|
input_ids = input_ids[attention_mask[i] == 1] |
|
|
image_nums, video_nums = 0, 0 |
|
|
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) |
|
|
vision_tokens = input_ids[vision_start_indices + 1] |
|
|
image_nums = (vision_tokens == image_token_id).sum() |
|
|
video_nums = (vision_tokens == video_token_id).sum() |
|
|
input_tokens = input_ids.tolist() |
|
|
llm_pos_ids_list: list = [] |
|
|
st = 0 |
|
|
remain_images, remain_videos = image_nums, video_nums |
|
|
for _ in range(image_nums + video_nums): |
|
|
if image_token_id in input_tokens and remain_images > 0: |
|
|
ed_image = input_tokens.index(image_token_id, st) |
|
|
else: |
|
|
ed_image = len(input_tokens) + 1 |
|
|
if video_token_id in input_tokens and remain_videos > 0: |
|
|
ed_video = input_tokens.index(video_token_id, st) |
|
|
else: |
|
|
ed_video = len(input_tokens) + 1 |
|
|
if ed_image < ed_video: |
|
|
t, h, w = ( |
|
|
image_grid_thw[image_index][0], |
|
|
image_grid_thw[image_index][1], |
|
|
image_grid_thw[image_index][2], |
|
|
) |
|
|
image_index += 1 |
|
|
remain_images -= 1 |
|
|
ed = ed_image |
|
|
|
|
|
else: |
|
|
t, h, w = ( |
|
|
video_grid_thw[video_index][0], |
|
|
video_grid_thw[video_index][1], |
|
|
video_grid_thw[video_index][2], |
|
|
) |
|
|
video_index += 1 |
|
|
remain_videos -= 1 |
|
|
ed = ed_video |
|
|
llm_grid_t, llm_grid_h, llm_grid_w = ( |
|
|
t.item(), |
|
|
h.item() // spatial_merge_size, |
|
|
w.item() // spatial_merge_size, |
|
|
) |
|
|
text_len = ed - st |
|
|
|
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
|
|
|
|
|
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() |
|
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() |
|
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() |
|
|
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) |
|
|
st = ed + llm_grid_t * llm_grid_h * llm_grid_w |
|
|
|
|
|
if st < len(input_tokens): |
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
|
text_len = len(input_tokens) - st |
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) |
|
|
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) |
|
|
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) |
|
|
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) |
|
|
return position_ids, mrope_position_deltas |
|
|
else: |
|
|
if attention_mask is not None: |
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) |
|
|
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] |
|
|
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] |
|
|
else: |
|
|
position_ids = ( |
|
|
torch.arange(input_ids.shape[1], device=input_ids.device) |
|
|
.view(1, 1, -1) |
|
|
.expand(3, input_ids.shape[0], -1) |
|
|
) |
|
|
mrope_position_deltas = torch.zeros( |
|
|
[input_ids.shape[0], 1], |
|
|
device=input_ids.device, |
|
|
dtype=input_ids.dtype, |
|
|
) |
|
|
|
|
|
return position_ids, mrope_position_deltas |
|
|
|
|
|
def get_video_features( |
|
|
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None |
|
|
): |
|
|
""" |
|
|
Encodes videos into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. |
|
|
|
|
|
Args: |
|
|
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
|
The tensors corresponding to the input videos. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
""" |
|
|
|
|
|
return self.get_image_features(pixel_values_videos, video_grid_thw) |
|
|
|
|
|
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): |
|
|
""" |
|
|
Encodes images into continuous embeddings that can be forwarded to the language model. The deepstack visual features are also returned. |
|
|
|
|
|
Args: |
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
|
The tensors corresponding to the input images. |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
""" |
|
|
pixel_values = pixel_values.type(self.visual.dtype) |
|
|
image_embeds, deepstack_image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw) |
|
|
split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist() |
|
|
image_embeds = torch.split(image_embeds, split_sizes) |
|
|
return image_embeds, deepstack_image_embeds |
|
|
|
|
|
def get_placeholder_mask( |
|
|
self, |
|
|
input_ids: torch.LongTensor, |
|
|
inputs_embeds: torch.FloatTensor, |
|
|
image_features: Optional[torch.FloatTensor] = None, |
|
|
video_features: Optional[torch.FloatTensor] = None, |
|
|
): |
|
|
""" |
|
|
Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is |
|
|
equal to the length of multimodal features. If the lengths are different, an error is raised. |
|
|
""" |
|
|
if input_ids is None: |
|
|
special_image_mask = inputs_embeds == self.get_input_embeddings()( |
|
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
special_image_mask = special_image_mask.all(-1) |
|
|
special_video_mask = inputs_embeds == self.get_input_embeddings()( |
|
|
torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
special_video_mask = special_video_mask.all(-1) |
|
|
else: |
|
|
special_image_mask = input_ids == self.config.image_token_id |
|
|
special_video_mask = input_ids == self.config.video_token_id |
|
|
|
|
|
n_image_tokens = special_image_mask.sum() |
|
|
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
|
raise ValueError( |
|
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}" |
|
|
) |
|
|
|
|
|
n_video_tokens = special_video_mask.sum() |
|
|
special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel(): |
|
|
raise ValueError( |
|
|
f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}" |
|
|
) |
|
|
|
|
|
return special_image_mask, special_video_mask |
|
|
|
|
|
@check_model_inputs |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
pixel_values: Optional[torch.Tensor] = None, |
|
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[tuple, PrismaVLModelOutputWithPast]: |
|
|
r""" |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
""" |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
|
|
|
|
|
|
|
|
batch_size, seq_len = inputs_embeds.shape[:2] |
|
|
|
|
|
|
|
|
if self.prev_uncertainty_code is None or self.prev_uncertainty_code.shape[0] != batch_size: |
|
|
|
|
|
|
|
|
uncertainty_code = torch.full( |
|
|
(batch_size, seq_len), |
|
|
self.n_uncertainty_levels // 2, |
|
|
dtype=torch.long, |
|
|
device=inputs_embeds.device |
|
|
) |
|
|
else: |
|
|
|
|
|
|
|
|
prev_len = self.prev_uncertainty_code.shape[1] |
|
|
if prev_len < seq_len: |
|
|
|
|
|
padding = torch.full( |
|
|
(batch_size, seq_len - prev_len), |
|
|
self.n_uncertainty_levels // 2, |
|
|
dtype=torch.long, |
|
|
device=self.prev_uncertainty_code.device |
|
|
) |
|
|
uncertainty_code = torch.cat([self.prev_uncertainty_code, padding], dim=1) |
|
|
else: |
|
|
uncertainty_code = self.prev_uncertainty_code[:, :seq_len] |
|
|
|
|
|
|
|
|
uncertainty_embeds = self.uncertainty_embeddings(uncertainty_code) |
|
|
|
|
|
|
|
|
|
|
|
uncertainty_shifted = torch.nn.functional.pad( |
|
|
uncertainty_embeds[:, :-1, :], |
|
|
(0, 0, 1, 0), |
|
|
value=0.0 |
|
|
) |
|
|
|
|
|
|
|
|
inputs_embeds = inputs_embeds + uncertainty_shifted |
|
|
|
|
|
image_mask = None |
|
|
video_mask = None |
|
|
|
|
|
if pixel_values is not None: |
|
|
image_embeds, deepstack_image_embeds = self.get_image_features(pixel_values, image_grid_thw) |
|
|
image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
image_mask, _ = self.get_placeholder_mask( |
|
|
input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds |
|
|
) |
|
|
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) |
|
|
|
|
|
if pixel_values_videos is not None: |
|
|
video_embeds, deepstack_video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw) |
|
|
video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
_, video_mask = self.get_placeholder_mask( |
|
|
input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds |
|
|
) |
|
|
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) |
|
|
|
|
|
visual_pos_masks = None |
|
|
deepstack_visual_embeds = None |
|
|
if image_mask is not None and video_mask is not None: |
|
|
|
|
|
image_mask = image_mask[..., 0] |
|
|
video_mask = video_mask[..., 0] |
|
|
visual_pos_masks = image_mask | video_mask |
|
|
deepstack_visual_embeds = [] |
|
|
image_mask_joint = image_mask[visual_pos_masks] |
|
|
video_mask_joint = video_mask[visual_pos_masks] |
|
|
for img_embed, vid_embed in zip(deepstack_image_embeds, deepstack_video_embeds): |
|
|
embed_joint = img_embed.new_zeros(visual_pos_masks.sum(), img_embed.shape[-1]).to(img_embed.device) |
|
|
embed_joint[image_mask_joint, :] = img_embed |
|
|
embed_joint[video_mask_joint, :] = vid_embed |
|
|
deepstack_visual_embeds.append(embed_joint) |
|
|
elif image_mask is not None: |
|
|
image_mask = image_mask[..., 0] |
|
|
visual_pos_masks = image_mask |
|
|
deepstack_visual_embeds = deepstack_image_embeds |
|
|
elif video_mask is not None: |
|
|
video_mask = video_mask[..., 0] |
|
|
visual_pos_masks = video_mask |
|
|
deepstack_visual_embeds = deepstack_video_embeds |
|
|
|
|
|
if position_ids is None: |
|
|
attention_mask_tensor = ( |
|
|
attention_mask if not isinstance(attention_mask, dict) else attention_mask["full_attention"] |
|
|
) |
|
|
if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4: |
|
|
attention_mask_tensor = torch.diagonal(attention_mask_tensor[:, 0], dim1=1, dim2=2) |
|
|
|
|
|
if attention_mask_tensor.dtype.is_floating_point: |
|
|
attention_mask_tensor = attention_mask_tensor / torch.finfo(attention_mask_tensor.dtype).min |
|
|
attention_mask_tensor = (1.0 - attention_mask_tensor).int() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prefill_compiled_stage = is_torchdynamo_compiling() and ( |
|
|
(input_ids is not None and input_ids.shape[1] != 1) |
|
|
or (inputs_embeds is not None and inputs_embeds.shape[1] != 1) |
|
|
) |
|
|
prefill_noncompiled_stage = not is_torchdynamo_compiling() and ( |
|
|
(cache_position is not None and cache_position[0] == 0) |
|
|
or (past_key_values is None or past_key_values.get_seq_length() == 0) |
|
|
) |
|
|
if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None: |
|
|
position_ids, rope_deltas = self.get_rope_index( |
|
|
input_ids, |
|
|
image_grid_thw, |
|
|
video_grid_thw, |
|
|
attention_mask=attention_mask_tensor, |
|
|
) |
|
|
self.rope_deltas = rope_deltas |
|
|
|
|
|
else: |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
delta = ( |
|
|
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device) |
|
|
if cache_position is not None |
|
|
else 0 |
|
|
) |
|
|
position_ids = torch.arange(seq_length, device=inputs_embeds.device) |
|
|
position_ids = position_ids.view(1, -1).expand(batch_size, -1) |
|
|
if cache_position is not None: |
|
|
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) |
|
|
position_ids = position_ids.add(delta) |
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) |
|
|
|
|
|
outputs = self.language_model( |
|
|
input_ids=None, |
|
|
position_ids=position_ids, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
visual_pos_masks=visual_pos_masks, |
|
|
deepstack_visual_embeds=deepstack_visual_embeds, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
return PrismaVLModelOutputWithPast( |
|
|
last_hidden_state=outputs.last_hidden_state, |
|
|
past_key_values=outputs.past_key_values, |
|
|
rope_deltas=self.rope_deltas, |
|
|
) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class PrismaVLCausalLMOutputWithPast(ModelOutput): |
|
|
""" |
|
|
Base class for PrismaVL causal language model (or autoregressive) outputs. |
|
|
""" |
|
|
r""" |
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
|
Language modeling loss (for next-token prediction). |
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
|
`past_key_values` input) to speed up sequential decoding. |
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
|
The rope index difference between sequence length and multimodal rope. |
|
|
""" |
|
|
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
|
logits: Optional[torch.FloatTensor] = None |
|
|
past_key_values: Optional[Cache] = None |
|
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None |
|
|
attentions: Optional[tuple[torch.FloatTensor]] = None |
|
|
rope_deltas: Optional[torch.LongTensor] = None |
|
|
|
|
|
|
|
|
class PrismaVLForConditionalGeneration(PrismaVLPreTrainedModel, GenerationMixin): |
|
|
_checkpoint_conversion_mapping = {} |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
accepts_loss_kwargs = False |
|
|
config: PrismaVLConfig |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = PrismaVLModel(config) |
|
|
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.set_input_embeddings(value) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model.get_decoder() |
|
|
|
|
|
def get_video_features( |
|
|
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None |
|
|
): |
|
|
return self.model.get_video_features(pixel_values_videos, video_grid_thw) |
|
|
|
|
|
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None): |
|
|
return self.model.get_image_features(pixel_values, image_grid_thw) |
|
|
|
|
|
|
|
|
@property |
|
|
def language_model(self): |
|
|
return self.model.language_model |
|
|
|
|
|
@property |
|
|
def visual(self): |
|
|
return self.model.visual |
|
|
|
|
|
@check_model_inputs |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
pixel_values: Optional[torch.Tensor] = None, |
|
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[tuple, PrismaVLCausalLMOutputWithPast]: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoProcessor, PrismaVLForConditionalGeneration |
|
|
|
|
|
>>> model = PrismaVLForConditionalGeneration.from_pretrained("Qwen/Prisma-VL-8B-Instruct") |
|
|
>>> processor = AutoProcessor.from_pretrained("Qwen/Prisma-VL-8B-Instruct") |
|
|
|
|
|
>>> messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", |
|
|
}, |
|
|
{"type": "text", "text": "Describe the image."}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
>>> inputs = processor.apply_chat_template( |
|
|
messages, |
|
|
tokenize=True, |
|
|
add_generation_prompt=True, |
|
|
return_dict=True, |
|
|
return_tensors="pt" |
|
|
) |
|
|
|
|
|
>>> # Generate |
|
|
>>> generated_ids = model.generate(**inputs, max_new_tokens=1024) |
|
|
>>> generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] |
|
|
>>> output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
>>> print(output_text) |
|
|
``` |
|
|
""" |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
pixel_values=pixel_values, |
|
|
pixel_values_videos=pixel_values_videos, |
|
|
image_grid_thw=image_grid_thw, |
|
|
video_grid_thw=video_grid_thw, |
|
|
position_ids=position_ids, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
|
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if logits is not None: |
|
|
with torch.no_grad(): |
|
|
logits_detached = logits.detach() |
|
|
|
|
|
|
|
|
probs = logits_detached.softmax(dim=-1) |
|
|
|
|
|
|
|
|
log_probs = torch.log(probs.clamp(min=1e-9)) |
|
|
entropy = -(probs * log_probs).sum(dim=-1) |
|
|
|
|
|
|
|
|
vocab_size = logits_detached.size(-1) |
|
|
max_entropy = math.log(vocab_size) |
|
|
entropy_norm = (entropy / max_entropy).clamp(0.0, 1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.model.prev_uncertainty_code = ( |
|
|
entropy_norm * (self.model.n_uncertainty_levels - 1) |
|
|
).long().clamp(0, self.model.n_uncertainty_levels - 1) |
|
|
|
|
|
return PrismaVLCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
rope_deltas=outputs.rope_deltas, |
|
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
cache_position=None, |
|
|
position_ids=None, |
|
|
use_cache=True, |
|
|
pixel_values=None, |
|
|
pixel_values_videos=None, |
|
|
image_grid_thw=None, |
|
|
video_grid_thw=None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
|
input_ids, |
|
|
past_key_values=past_key_values, |
|
|
attention_mask=attention_mask, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
position_ids=position_ids, |
|
|
pixel_values=pixel_values, |
|
|
pixel_values_videos=pixel_values_videos, |
|
|
image_grid_thw=image_grid_thw, |
|
|
video_grid_thw=video_grid_thw, |
|
|
use_cache=use_cache, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
model_inputs["position_ids"] = None |
|
|
|
|
|
if cache_position[0] != 0: |
|
|
model_inputs["pixel_values"] = None |
|
|
model_inputs["pixel_values_videos"] = None |
|
|
|
|
|
return model_inputs |
|
|
|
|
|
def _get_image_nums_and_video_nums( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor], |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Get the number of images and videos for each sample to calculate the separation length of the sample tensor. |
|
|
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. |
|
|
|
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
|
|
Returns: |
|
|
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) |
|
|
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) |
|
|
""" |
|
|
image_token_id = self.config.image_token_id |
|
|
video_token_id = self.config.video_token_id |
|
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
|
|
|
if inputs_embeds is not None: |
|
|
vision_start_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
image_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
video_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
else: |
|
|
vision_start_mask = input_ids == vision_start_token_id |
|
|
image_mask = input_ids == image_token_id |
|
|
video_mask = input_ids == video_token_id |
|
|
|
|
|
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) |
|
|
image_nums = torch.sum(vision_first_mask & image_mask, dim=1) |
|
|
video_nums = torch.sum(vision_first_mask & video_mask, dim=1) |
|
|
|
|
|
return image_nums, video_nums |
|
|
|
|
|
def _expand_inputs_for_generation( |
|
|
self, |
|
|
expand_size: int = 1, |
|
|
is_encoder_decoder: bool = False, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
**model_kwargs, |
|
|
) -> tuple[torch.LongTensor, dict[str, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if expand_size == 1: |
|
|
return input_ids, model_kwargs |
|
|
|
|
|
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"] |
|
|
|
|
|
def _expand_dict_for_generation_visual(dict_to_expand): |
|
|
image_grid_thw = model_kwargs.get("image_grid_thw", None) |
|
|
video_grid_thw = model_kwargs.get("video_grid_thw", None) |
|
|
image_nums, video_nums = self._get_image_nums_and_video_nums( |
|
|
input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None) |
|
|
) |
|
|
|
|
|
def _repeat_interleave_samples(x, lengths, repeat_times): |
|
|
samples = torch.split(x, lengths) |
|
|
repeat_args = [repeat_times] + [1] * (x.dim() - 1) |
|
|
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) |
|
|
return result |
|
|
|
|
|
for key in dict_to_expand: |
|
|
if key == "pixel_values": |
|
|
|
|
|
samples = torch.split(image_grid_thw, list(image_nums)) |
|
|
|
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "image_grid_thw": |
|
|
|
|
|
lengths = list(image_nums) |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "pixel_values_videos": |
|
|
samples = torch.split(video_grid_thw, list(video_nums)) |
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "video_grid_thw": |
|
|
lengths = list(video_nums) |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "second_per_grid_ts": |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size |
|
|
) |
|
|
return dict_to_expand |
|
|
|
|
|
def _expand_dict_for_generation(dict_to_expand): |
|
|
for key in dict_to_expand: |
|
|
if ( |
|
|
key != "cache_position" |
|
|
and dict_to_expand[key] is not None |
|
|
and isinstance(dict_to_expand[key], torch.Tensor) |
|
|
and key not in visual_keys |
|
|
): |
|
|
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) |
|
|
return dict_to_expand |
|
|
|
|
|
model_kwargs = _expand_dict_for_generation_visual(model_kwargs) |
|
|
|
|
|
if input_ids is not None: |
|
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
|
|
|
|
model_kwargs = _expand_dict_for_generation(model_kwargs) |
|
|
|
|
|
if is_encoder_decoder: |
|
|
if model_kwargs.get("encoder_outputs") is None: |
|
|
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") |
|
|
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) |
|
|
|
|
|
return input_ids, model_kwargs |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"PrismaVLVisionModel", |
|
|
"PrismaVLForConditionalGeneration", |
|
|
"PrismaVLModel", |
|
|
"PrismaVLPreTrainedModel", |
|
|
"PrismaVLTextModel", |
|
|
] |
|
|
|