QuentinKemperino
commited on
Commit
•
427cd48
1
Parent(s):
5f6fbcb
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lex_glue
|
7 |
+
model-index:
|
8 |
+
- name: ECHR_test_2_task_B
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# ECHR_test_2_task_B
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2092
|
20 |
+
- Macro-f1: 0.5250
|
21 |
+
- Micro-f1: 0.6190
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 10
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
|
53 |
+
| 0.2119 | 0.44 | 500 | 0.2945 | 0.2637 | 0.4453 |
|
54 |
+
| 0.1702 | 0.89 | 1000 | 0.2734 | 0.3246 | 0.4843 |
|
55 |
+
| 0.1736 | 1.33 | 1500 | 0.2633 | 0.3725 | 0.5133 |
|
56 |
+
| 0.1571 | 1.78 | 2000 | 0.2549 | 0.3942 | 0.5417 |
|
57 |
+
| 0.1476 | 2.22 | 2500 | 0.2348 | 0.4187 | 0.5649 |
|
58 |
+
| 0.1599 | 2.67 | 3000 | 0.2427 | 0.4286 | 0.5606 |
|
59 |
+
| 0.1481 | 3.11 | 3500 | 0.2210 | 0.4664 | 0.5780 |
|
60 |
+
| 0.1412 | 3.56 | 4000 | 0.2542 | 0.4362 | 0.5617 |
|
61 |
+
| 0.1505 | 4.0 | 4500 | 0.2249 | 0.4728 | 0.5863 |
|
62 |
+
| 0.1425 | 4.44 | 5000 | 0.2311 | 0.4576 | 0.5845 |
|
63 |
+
| 0.1461 | 4.89 | 5500 | 0.2261 | 0.4590 | 0.5832 |
|
64 |
+
| 0.1451 | 5.33 | 6000 | 0.2248 | 0.4738 | 0.5901 |
|
65 |
+
| 0.1281 | 5.78 | 6500 | 0.2317 | 0.4641 | 0.5896 |
|
66 |
+
| 0.1354 | 6.22 | 7000 | 0.2366 | 0.4639 | 0.5946 |
|
67 |
+
| 0.1204 | 6.67 | 7500 | 0.2311 | 0.4875 | 0.5877 |
|
68 |
+
| 0.1229 | 7.11 | 8000 | 0.2083 | 0.4815 | 0.6020 |
|
69 |
+
| 0.1368 | 7.56 | 8500 | 0.2170 | 0.5213 | 0.6021 |
|
70 |
+
| 0.1288 | 8.0 | 9000 | 0.2136 | 0.5336 | 0.6176 |
|
71 |
+
| 0.1275 | 8.44 | 9500 | 0.2180 | 0.5204 | 0.6082 |
|
72 |
+
| 0.1232 | 8.89 | 10000 | 0.2147 | 0.5334 | 0.6083 |
|
73 |
+
| 0.1319 | 9.33 | 10500 | 0.2121 | 0.5312 | 0.6186 |
|
74 |
+
| 0.1267 | 9.78 | 11000 | 0.2092 | 0.5250 | 0.6190 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.20.1
|
80 |
+
- Pytorch 1.11.0+cu113
|
81 |
+
- Datasets 2.3.2
|
82 |
+
- Tokenizers 0.12.1
|