QuentinKemperino commited on
Commit
427cd48
1 Parent(s): 5f6fbcb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lex_glue
7
+ model-index:
8
+ - name: ECHR_test_2_task_B
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ECHR_test_2_task_B
16
+
17
+ This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2092
20
+ - Macro-f1: 0.5250
21
+ - Micro-f1: 0.6190
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
53
+ | 0.2119 | 0.44 | 500 | 0.2945 | 0.2637 | 0.4453 |
54
+ | 0.1702 | 0.89 | 1000 | 0.2734 | 0.3246 | 0.4843 |
55
+ | 0.1736 | 1.33 | 1500 | 0.2633 | 0.3725 | 0.5133 |
56
+ | 0.1571 | 1.78 | 2000 | 0.2549 | 0.3942 | 0.5417 |
57
+ | 0.1476 | 2.22 | 2500 | 0.2348 | 0.4187 | 0.5649 |
58
+ | 0.1599 | 2.67 | 3000 | 0.2427 | 0.4286 | 0.5606 |
59
+ | 0.1481 | 3.11 | 3500 | 0.2210 | 0.4664 | 0.5780 |
60
+ | 0.1412 | 3.56 | 4000 | 0.2542 | 0.4362 | 0.5617 |
61
+ | 0.1505 | 4.0 | 4500 | 0.2249 | 0.4728 | 0.5863 |
62
+ | 0.1425 | 4.44 | 5000 | 0.2311 | 0.4576 | 0.5845 |
63
+ | 0.1461 | 4.89 | 5500 | 0.2261 | 0.4590 | 0.5832 |
64
+ | 0.1451 | 5.33 | 6000 | 0.2248 | 0.4738 | 0.5901 |
65
+ | 0.1281 | 5.78 | 6500 | 0.2317 | 0.4641 | 0.5896 |
66
+ | 0.1354 | 6.22 | 7000 | 0.2366 | 0.4639 | 0.5946 |
67
+ | 0.1204 | 6.67 | 7500 | 0.2311 | 0.4875 | 0.5877 |
68
+ | 0.1229 | 7.11 | 8000 | 0.2083 | 0.4815 | 0.6020 |
69
+ | 0.1368 | 7.56 | 8500 | 0.2170 | 0.5213 | 0.6021 |
70
+ | 0.1288 | 8.0 | 9000 | 0.2136 | 0.5336 | 0.6176 |
71
+ | 0.1275 | 8.44 | 9500 | 0.2180 | 0.5204 | 0.6082 |
72
+ | 0.1232 | 8.89 | 10000 | 0.2147 | 0.5334 | 0.6083 |
73
+ | 0.1319 | 9.33 | 10500 | 0.2121 | 0.5312 | 0.6186 |
74
+ | 0.1267 | 9.78 | 11000 | 0.2092 | 0.5250 | 0.6190 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.20.1
80
+ - Pytorch 1.11.0+cu113
81
+ - Datasets 2.3.2
82
+ - Tokenizers 0.12.1