QuentinKemperino commited on
Commit
865f2b8
1 Parent(s): e8db62c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -11
README.md CHANGED
@@ -16,9 +16,9 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.2263
20
- - Macro-f1: 0.3868
21
- - Micro-f1: 0.5469
22
 
23
  ## Model description
24
 
@@ -37,23 +37,41 @@ More information needed
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
- - learning_rate: 0.0001
41
  - train_batch_size: 8
42
  - eval_batch_size: 8
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
- - num_epochs: 2
47
  - mixed_precision_training: Native AMP
48
 
49
  ### Training results
50
 
51
- | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 |
52
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
53
- | 0.2058 | 0.44 | 500 | 0.2743 | 0.3073 | 0.4578 |
54
- | 0.1583 | 0.89 | 1000 | 0.2576 | 0.3335 | 0.5014 |
55
- | 0.1602 | 1.33 | 1500 | 0.2343 | 0.3632 | 0.5341 |
56
- | 0.1474 | 1.78 | 2000 | 0.2263 | 0.3868 | 0.5469 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
 
59
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.1998
20
+ - Macro-f1: 0.5295
21
+ - Micro-f1: 0.6157
22
 
23
  ## Model description
24
 
 
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
  - train_batch_size: 8
42
  - eval_batch_size: 8
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
  - mixed_precision_training: Native AMP
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
53
+ | 0.2142 | 0.44 | 500 | 0.2887 | 0.2391 | 0.4263 |
54
+ | 0.172 | 0.89 | 1000 | 0.2672 | 0.2908 | 0.4628 |
55
+ | 0.1737 | 1.33 | 1500 | 0.2612 | 0.3657 | 0.5102 |
56
+ | 0.1581 | 1.78 | 2000 | 0.2412 | 0.3958 | 0.5468 |
57
+ | 0.1509 | 2.22 | 2500 | 0.2264 | 0.3950 | 0.5552 |
58
+ | 0.1606 | 2.67 | 3000 | 0.2342 | 0.4006 | 0.5511 |
59
+ | 0.1491 | 3.11 | 3500 | 0.2176 | 0.4558 | 0.5622 |
60
+ | 0.1392 | 3.56 | 4000 | 0.2454 | 0.4128 | 0.5596 |
61
+ | 0.15 | 4.0 | 4500 | 0.2113 | 0.4684 | 0.5874 |
62
+ | 0.1461 | 4.44 | 5000 | 0.2179 | 0.4631 | 0.5815 |
63
+ | 0.1457 | 4.89 | 5500 | 0.2151 | 0.4805 | 0.5949 |
64
+ | 0.1443 | 5.33 | 6000 | 0.2155 | 0.5123 | 0.5917 |
65
+ | 0.1279 | 5.78 | 6500 | 0.2131 | 0.4915 | 0.5998 |
66
+ | 0.1377 | 6.22 | 7000 | 0.2244 | 0.4705 | 0.5944 |
67
+ | 0.1242 | 6.67 | 7500 | 0.2150 | 0.5089 | 0.5918 |
68
+ | 0.1222 | 7.11 | 8000 | 0.2045 | 0.4801 | 0.5981 |
69
+ | 0.1372 | 7.56 | 8500 | 0.2074 | 0.5317 | 0.5962 |
70
+ | 0.1289 | 8.0 | 9000 | 0.2035 | 0.5323 | 0.6126 |
71
+ | 0.1295 | 8.44 | 9500 | 0.2058 | 0.5213 | 0.6073 |
72
+ | 0.123 | 8.89 | 10000 | 0.2027 | 0.5486 | 0.6135 |
73
+ | 0.1335 | 9.33 | 10500 | 0.1984 | 0.5442 | 0.6249 |
74
+ | 0.1258 | 9.78 | 11000 | 0.1998 | 0.5295 | 0.6157 |
75
 
76
 
77
  ### Framework versions