Update README.md
Browse files
README.md
CHANGED
@@ -13,12 +13,38 @@ datasets:
|
|
13 |
- bespokelabs/Bespoke-Stratos-17k
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- bespokelabs/Bespoke-Stratos-17k
|
14 |
---
|
15 |
|
16 |
+
# Phi4 Turn R1Distill LoRA Adapters
|
17 |
|
18 |
+
## Overview
|
19 |
+
Hey! These LoRA adapters are trained using different reasoning datasets that utilize **Thought** and **Solution** for reasoning responses.
|
20 |
+
I hope these help jumpstart your project! These adapters have been trained on an **A800 GPU** and should provide a solid base for fine-tuning or merging.
|
21 |
|
22 |
+
Everything on my page is left **public** for Open Source use.
|
23 |
|
24 |
+
## Available LoRA Adapters
|
25 |
+
Here are the links to the available adapters as of **January 30, 2025**:
|
26 |
+
|
27 |
+
- [Phi4.Turn.R1Distill-Lora1](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora1)
|
28 |
+
- [Phi4.Turn.R1Distill-Lora2](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora2)
|
29 |
+
- [Phi4.Turn.R1Distill-Lora3](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora3)
|
30 |
+
- [Phi4.Turn.R1Distill-Lora4](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora4)
|
31 |
+
- [Phi4.Turn.R1Distill-Lora5](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora5)
|
32 |
+
- [Phi4.Turn.R1Distill-Lora6](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora6)
|
33 |
+
- [Phi4.Turn.R1Distill-Lora7](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora7)
|
34 |
+
- [Phi4.Turn.R1Distill-Lora8](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora8)
|
35 |
+
|
36 |
+
## Usage
|
37 |
+
These adapters can be loaded and used with `peft` and `transformers`. Here’s a quick example:
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
+
from peft import PeftModel
|
42 |
+
|
43 |
+
base_model = "microsoft/Phi-4"
|
44 |
+
lora_adapter = "Quazim0t0/Phi4.Turn.R1Distill-Lora1"
|
45 |
+
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(base_model)
|
48 |
+
model = PeftModel.from_pretrained(model, lora_adapter)
|
49 |
+
|
50 |
+
model.eval()
|