munish0838 commited on
Commit
e9e32c0
1 Parent(s): 2206865

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +147 -0
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: llama3
5
+ base_model: meta-llama/Meta-Llama-3-8B
6
+ tags:
7
+ - axolotl
8
+ - generated_from_trainer
9
+ datasets:
10
+ - Magpie-Align/Llama-3-8B-Self-Instruct-100K
11
+ model-index:
12
+ - name: Llama-3-8B-Self-Instruct-100K
13
+ results: []
14
+
15
+ ---
16
+
17
+ ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
18
+
19
+ # QuantFactory/Llama-3-8B-Self-Instruct-100K-GGUF
20
+ This is quantized version of [Magpie-Align/Llama-3-8B-Self-Instruct-100K](https://huggingface.co/Magpie-Align/Llama-3-8B-Self-Instruct-100K) created using llama.cpp
21
+
22
+ # Original Model Card
23
+
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
29
+ <details><summary>See axolotl config</summary>
30
+
31
+ axolotl version: `0.4.1`
32
+ ```yaml
33
+ base_model: meta-llama/Meta-Llama-3-8B
34
+ model_type: LlamaForCausalLM
35
+ tokenizer_type: AutoTokenizer
36
+ chat_template: llama3
37
+
38
+ load_in_8bit: false
39
+ load_in_4bit: false
40
+ strict: false
41
+
42
+ datasets:
43
+ - path: Magpie-Align/Llama-3-8B-Self-Instruct-100K
44
+ type: sharegpt
45
+ conversation: llama3
46
+ dataset_prepared_path: last_run_prepared
47
+ val_set_size: 0.001
48
+ output_dir: axolotl_out/Llama-3-8B-self-instruct-100K
49
+
50
+ sequence_len: 8192
51
+ sample_packing: true
52
+ eval_sample_packing: false
53
+ pad_to_sequence_len: true
54
+
55
+ wandb_project: SynDa
56
+ wandb_entity:
57
+ wandb_watch:
58
+ wandb_name: Llama-3-8B-Self-Instruct
59
+ wandb_log_model:
60
+ hub_model_id: Magpie-Align/Llama-3-8B-Self-Instruct-100K
61
+
62
+ gradient_accumulation_steps: 8
63
+ micro_batch_size: 1
64
+ num_epochs: 2
65
+ optimizer: paged_adamw_8bit
66
+ lr_scheduler: cosine
67
+ learning_rate: 2e-5
68
+
69
+ train_on_inputs: false
70
+ group_by_length: false
71
+ bf16: auto
72
+ fp16:
73
+ tf32: false
74
+
75
+ gradient_checkpointing: true
76
+ gradient_checkpointing_kwargs:
77
+ use_reentrant: false
78
+ early_stopping_patience:
79
+ resume_from_checkpoint:
80
+ logging_steps: 1
81
+ xformers_attention:
82
+ flash_attention: true
83
+
84
+ warmup_ratio: 0.1
85
+ evals_per_epoch: 5
86
+ eval_table_size:
87
+ saves_per_epoch: 1
88
+ debug:
89
+ deepspeed:
90
+ weight_decay: 0.0
91
+ fsdp:
92
+ fsdp_config:
93
+ special_tokens:
94
+ pad_token: <|end_of_text|>
95
+
96
+ ```
97
+
98
+ </details><br>
99
+
100
+ # Llama-3-8B-Self-Instruct-100K
101
+
102
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the Magpie-Align/Llama-3-8B-Self-Instruct-100K dataset.
103
+ It achieves the following results on the evaluation set:
104
+ - Loss: 0.6245
105
+
106
+ ## Training procedure
107
+
108
+ ### Training hyperparameters
109
+
110
+ The following hyperparameters were used during training:
111
+ - learning_rate: 2e-05
112
+ - train_batch_size: 1
113
+ - eval_batch_size: 1
114
+ - seed: 42
115
+ - distributed_type: multi-GPU
116
+ - num_devices: 4
117
+ - gradient_accumulation_steps: 8
118
+ - total_train_batch_size: 32
119
+ - total_eval_batch_size: 4
120
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
121
+ - lr_scheduler_type: cosine
122
+ - lr_scheduler_warmup_steps: 10
123
+ - num_epochs: 2
124
+
125
+ ### Training results
126
+
127
+ | Training Loss | Epoch | Step | Validation Loss |
128
+ |:-------------:|:------:|:----:|:---------------:|
129
+ | 1.3442 | 0.0190 | 1 | 2.3110 |
130
+ | 0.9581 | 0.2095 | 11 | 1.1476 |
131
+ | 0.8258 | 0.4190 | 22 | 0.9256 |
132
+ | 0.717 | 0.6286 | 33 | 0.7341 |
133
+ | 0.6746 | 0.8381 | 44 | 0.6497 |
134
+ | 0.5601 | 1.0333 | 55 | 0.6268 |
135
+ | 0.5571 | 1.2429 | 66 | 0.6285 |
136
+ | 0.538 | 1.4524 | 77 | 0.6258 |
137
+ | 0.548 | 1.6619 | 88 | 0.6251 |
138
+ | 0.5467 | 1.8714 | 99 | 0.6245 |
139
+
140
+
141
+ ### Framework versions
142
+
143
+ - Transformers 4.43.3
144
+ - Pytorch 2.4.0+cu121
145
+ - Datasets 2.19.1
146
+ - Tokenizers 0.19.1
147
+