QuangHuy54 commited on
Commit
97459cf
1 Parent(s): 1c4ac00

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - multi_news
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: long-t5-tglobal-base-mediasum
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: multi_news
17
+ type: multi_news
18
+ config: default
19
+ split: train[:20000]
20
+ args: default
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 0.3246
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # long-t5-tglobal-base-mediasum
31
+
32
+ This model is a fine-tuned version of [pszemraj/long-t5-tglobal-base-16384-book-summary](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) on the multi_news dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 2.0387
35
+ - Rouge1: 0.3246
36
+ - Rouge2: 0.0867
37
+ - Rougel: 0.1663
38
+ - Rougelsum: 0.1662
39
+ - Gen Len: 106.985
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 2e-05
59
+ - train_batch_size: 4
60
+ - eval_batch_size: 4
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 3
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
70
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
71
+ | 2.4191 | 1.0 | 4500 | 2.0952 | 0.3389 | 0.0882 | 0.1706 | 0.1706 | 118.285 |
72
+ | 2.3462 | 2.0 | 9000 | 2.0484 | 0.3339 | 0.0887 | 0.1683 | 0.1683 | 111.936 |
73
+ | 2.3458 | 3.0 | 13500 | 2.0387 | 0.3246 | 0.0867 | 0.1663 | 0.1662 | 106.985 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.30.2
79
+ - Pytorch 2.0.1+cu118
80
+ - Datasets 2.13.1
81
+ - Tokenizers 0.13.3