|
USE_DDP=false |
|
|
|
if [ $USE_DDP = false ]; then |
|
|
|
CUDA_VISIBLE_DEVICES=1 \ |
|
python examples/glen_phase1/train_glen.py \ |
|
--output_dir logs/model_glen_nq/GLEN_P1_base \ |
|
--model_name_or_path t5-base \ |
|
--load_best_model_at_end True \ |
|
--query_type gtq_doc_aug_qg \ |
|
--per_device_train_batch_size 32 \ |
|
--per_device_eval_batch_size 4 \ |
|
--gradient_accumulation_steps 8 \ |
|
--dropout_rate 0.1 \ |
|
--Rdrop 0.15 \ |
|
--aug_query True \ |
|
--aug_query_type corrupted_query \ |
|
--input_dropout 1 \ |
|
--id_class t5_bm25_truncate_3 \ |
|
--dataset_name nq320k \ |
|
--test100 0 \ |
|
--tree 1 \ |
|
--pretrain_decoder True \ |
|
--max_input_length 156 \ |
|
--val_check_interval 0.1 \ |
|
--tie_word_embeddings True \ |
|
--decoder_input doc_rep \ |
|
--max_output_length 5 \ |
|
--num_return_sequences 10 \ |
|
--logging_steps 100 \ |
|
--overwrite_output_dir \ |
|
--wandb_tag glen_base \ |
|
--do_eval \ |
|
--seed 42 |
|
else |
|
|
|
CUDA_VISIBLE_DEVICES=0,1 \ |
|
python -m torch.distributed.launch --nproc_per_node=2 examples/glen_phase1/train_glen.py \ |
|
--ddp_find_unused_parameters False \ |
|
--output_dir logs/model_glen_nq/GLEN_base \ |
|
--model_name_or_path t5-base \ |
|
--load_best_model_at_end True \ |
|
--query_type gtq_doc_aug_qg \ |
|
--per_device_train_batch_size 32 \ |
|
--per_device_eval_batch_size 4 \ |
|
--gradient_accumulation_steps 8 \ |
|
--dropout_rate 0.1 \ |
|
--Rdrop 0.15 \ |
|
--aug_query True \ |
|
--aug_query_type corrupted_query \ |
|
--input_dropout 1 \ |
|
--id_class t5_bm25_truncate_3 \ |
|
--dataset_name nq320k \ |
|
--test100 0 \ |
|
--tree 1 \ |
|
--pretrain_decoder True \ |
|
--max_input_length 156 \ |
|
--val_check_interval 0.1 \ |
|
--tie_word_embeddings True \ |
|
--decoder_input doc_rep \ |
|
--max_output_length 5 \ |
|
--num_return_sequences 10 \ |
|
--logging_steps 100 \ |
|
--overwrite_output_dir \ |
|
--wandb_tag glen_base \ |
|
--do_eval \ |
|
--seed 42 |
|
fi |
|
|