QuanSun Leyo commited on
Commit
c3f5df4
1 Parent(s): 63d2556

Upload 9 files (#2)

Browse files

- Upload 9 files (119b2e667414a547bb29c918989920f35e6b7557)


Co-authored-by: Leo Tronchon <Leyo@users.noreply.huggingface.co>

EVA02-CLIP-bigE-14-plus_s9B/CLIP.png ADDED
EVA02-CLIP-bigE-14-plus_s9B/config.json ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "HuggingfaceM4/EVA02-CLIP-bigE-14-plus_s9B_M4",
4
+ "architectures": [
5
+ "EvaCLIPModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_evaclip.EvaCLIPConfig",
9
+ "AutoModel": "modeling_evaclip.EvaCLIPModel"
10
+ },
11
+ "initializer_factor": 1.0,
12
+ "logit_scale_init_value": 2.659260036932778,
13
+ "model_type": "clip",
14
+ "projection_dim": 1024,
15
+ "text_config": {
16
+ "_name_or_path": "",
17
+ "add_cross_attention": false,
18
+ "architectures": null,
19
+ "attention_dropout": 0.0,
20
+ "bad_words_ids": null,
21
+ "begin_suppress_tokens": null,
22
+ "bos_token_id": 0,
23
+ "chunk_size_feed_forward": 0,
24
+ "cross_attention_hidden_size": null,
25
+ "decoder_start_token_id": null,
26
+ "diversity_penalty": 0.0,
27
+ "do_sample": false,
28
+ "dropout": 0.0,
29
+ "early_stopping": false,
30
+ "encoder_no_repeat_ngram_size": 0,
31
+ "eos_token_id": 2,
32
+ "exponential_decay_length_penalty": null,
33
+ "finetuning_task": null,
34
+ "forced_bos_token_id": null,
35
+ "forced_eos_token_id": null,
36
+ "hidden_act": "gelu",
37
+ "hidden_size": 1280,
38
+ "id2label": {
39
+ "0": "LABEL_0",
40
+ "1": "LABEL_1"
41
+ },
42
+ "initializer_factor": 1.0,
43
+ "initializer_range": 0.02,
44
+ "intermediate_size": 5120,
45
+ "is_decoder": false,
46
+ "is_encoder_decoder": false,
47
+ "k_bias": true,
48
+ "label2id": {
49
+ "LABEL_0": 0,
50
+ "LABEL_1": 1
51
+ },
52
+ "layer_norm_eps": 1e-05,
53
+ "length_penalty": 1.0,
54
+ "max_length": 20,
55
+ "max_position_embeddings": 77,
56
+ "min_length": 0,
57
+ "model_type": "clip_text_model",
58
+ "no_repeat_ngram_size": 0,
59
+ "num_attention_heads": 20,
60
+ "num_beam_groups": 1,
61
+ "num_beams": 1,
62
+ "num_hidden_layers": 32,
63
+ "num_return_sequences": 1,
64
+ "output_attentions": false,
65
+ "output_hidden_states": false,
66
+ "output_scores": false,
67
+ "pad_token_id": 1,
68
+ "post_layernorm": false,
69
+ "prefix": null,
70
+ "problem_type": null,
71
+ "projection_dim": 1024,
72
+ "pruned_heads": {},
73
+ "q_bias": true,
74
+ "remove_invalid_values": false,
75
+ "repetition_penalty": 1.0,
76
+ "return_dict": true,
77
+ "return_dict_in_generate": false,
78
+ "sep_token_id": null,
79
+ "suppress_tokens": null,
80
+ "task_specific_params": null,
81
+ "temperature": 1.0,
82
+ "tf_legacy_loss": false,
83
+ "tie_encoder_decoder": false,
84
+ "tie_word_embeddings": true,
85
+ "tokenizer_class": null,
86
+ "top_k": 50,
87
+ "top_p": 1.0,
88
+ "torch_dtype": null,
89
+ "torchscript": false,
90
+ "transformers_version": "4.28.0.dev0",
91
+ "typical_p": 1.0,
92
+ "use_bfloat16": false,
93
+ "v_bias": true,
94
+ "vocab_size": 49408
95
+ },
96
+ "torch_dtype": "float32",
97
+ "transformers_version": null,
98
+ "vision_config": {
99
+ "_name_or_path": "",
100
+ "add_cross_attention": false,
101
+ "architectures": null,
102
+ "attention_dropout": 0.0,
103
+ "bad_words_ids": null,
104
+ "begin_suppress_tokens": null,
105
+ "bos_token_id": null,
106
+ "chunk_size_feed_forward": 0,
107
+ "cross_attention_hidden_size": null,
108
+ "decoder_start_token_id": null,
109
+ "diversity_penalty": 0.0,
110
+ "do_sample": false,
111
+ "dropout": 0.0,
112
+ "early_stopping": false,
113
+ "encoder_no_repeat_ngram_size": 0,
114
+ "eos_token_id": null,
115
+ "exponential_decay_length_penalty": null,
116
+ "finetuning_task": null,
117
+ "forced_bos_token_id": null,
118
+ "forced_eos_token_id": null,
119
+ "hidden_act": "gelu",
120
+ "hidden_size": 1792,
121
+ "id2label": {
122
+ "0": "LABEL_0",
123
+ "1": "LABEL_1"
124
+ },
125
+ "image_size": 224,
126
+ "initializer_factor": 1.0,
127
+ "initializer_range": 0.02,
128
+ "intermediate_size": 15360,
129
+ "is_decoder": false,
130
+ "is_encoder_decoder": false,
131
+ "k_bias": false,
132
+ "label2id": {
133
+ "LABEL_0": 0,
134
+ "LABEL_1": 1
135
+ },
136
+ "layer_norm_eps": 1e-06,
137
+ "length_penalty": 1.0,
138
+ "max_length": 20,
139
+ "min_length": 0,
140
+ "model_type": "clip_vision_model",
141
+ "no_repeat_ngram_size": 0,
142
+ "num_attention_heads": 16,
143
+ "num_beam_groups": 1,
144
+ "num_beams": 1,
145
+ "num_channels": 3,
146
+ "num_hidden_layers": 64,
147
+ "num_return_sequences": 1,
148
+ "output_attentions": false,
149
+ "output_hidden_states": false,
150
+ "output_scores": false,
151
+ "pad_token_id": null,
152
+ "patch_size": 14,
153
+ "post_layernorm": true,
154
+ "prefix": null,
155
+ "problem_type": null,
156
+ "projection_dim": 1024,
157
+ "pruned_heads": {},
158
+ "q_bias": true,
159
+ "remove_invalid_values": false,
160
+ "repetition_penalty": 1.0,
161
+ "return_dict": true,
162
+ "return_dict_in_generate": false,
163
+ "sep_token_id": null,
164
+ "suppress_tokens": null,
165
+ "task_specific_params": null,
166
+ "temperature": 1.0,
167
+ "tf_legacy_loss": false,
168
+ "tie_encoder_decoder": false,
169
+ "tie_word_embeddings": true,
170
+ "tokenizer_class": null,
171
+ "top_k": 50,
172
+ "top_p": 1.0,
173
+ "torch_dtype": null,
174
+ "torchscript": false,
175
+ "transformers_version": "4.28.0.dev0",
176
+ "typical_p": 1.0,
177
+ "use_bfloat16": false,
178
+ "v_bias": true
179
+ }
180
+ }
EVA02-CLIP-bigE-14-plus_s9B/configuration_evaclip.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ EvaCLIP model configuration"""
16
+ # Code mainly copied here: https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/configuration_clip.py
17
+ # and adjusted for evaclip
18
+
19
+ import copy
20
+ import os
21
+ from collections import OrderedDict
22
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
23
+
24
+
25
+ if TYPE_CHECKING:
26
+ from transformers.processing_utils import ProcessorMixin
27
+ from transformers.utils import TensorType
28
+
29
+ from transformers.configuration_utils import PretrainedConfig
30
+ from transformers.utils import logging
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ class EvaCLIPTextConfig(PretrainedConfig):
37
+ r"""
38
+ This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
39
+ text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
40
+ with the defaults will yield a similar configuration to that of the text encoder of the CLIP
41
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
42
+
43
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
44
+ documentation from [`PretrainedConfig`] for more information.
45
+
46
+ Args:
47
+ vocab_size (`int`, *optional*, defaults to 49408):
48
+ Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
49
+ the `inputs_ids` passed when calling [`CLIPModel`].
50
+ hidden_size (`int`, *optional*, defaults to 512):
51
+ Dimensionality of the encoder layers and the pooler layer.
52
+ intermediate_size (`int`, *optional*, defaults to 2048):
53
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
54
+ num_hidden_layers (`int`, *optional*, defaults to 12):
55
+ Number of hidden layers in the Transformer encoder.
56
+ num_attention_heads (`int`, *optional*, defaults to 8):
57
+ Number of attention heads for each attention layer in the Transformer encoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 77):
59
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
60
+ just in case (e.g., 512 or 1024 or 2048).
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
62
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
63
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
64
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
65
+ The epsilon used by the layer normalization layers.
66
+ attention_dropout (`float`, *optional*, defaults to 0.0):
67
+ The dropout ratio for the attention probabilities.
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ initializer_factor (`float`, *optional*, defaults to 1):
71
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
72
+ testing).
73
+
74
+ Example:
75
+
76
+ ```python
77
+ >>> from transformers import CLIPTextConfig, CLIPTextModel
78
+
79
+ >>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
80
+ >>> configuration = CLIPTextConfig()
81
+
82
+ >>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
83
+ >>> model = CLIPTextModel(configuration)
84
+
85
+ >>> # Accessing the model configuration
86
+ >>> configuration = model.config
87
+ ```"""
88
+ model_type = "clip_text_model"
89
+
90
+ def __init__(
91
+ self,
92
+ vocab_size=49408,
93
+ hidden_size=512,
94
+ intermediate_size=2048,
95
+ projection_dim=512,
96
+ num_hidden_layers=12,
97
+ num_attention_heads=8,
98
+ max_position_embeddings=77,
99
+ hidden_act="gelu",
100
+ layer_norm_eps=1e-5,
101
+ attention_dropout=0.0,
102
+ initializer_range=0.02,
103
+ initializer_factor=1.0,
104
+ q_bias=True,
105
+ k_bias=True,
106
+ v_bias=True,
107
+ post_layernorm=False,
108
+ pad_token_id=1,
109
+ bos_token_id=0,
110
+ eos_token_id=2,
111
+ **kwargs,
112
+ ):
113
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
114
+
115
+ self.vocab_size = vocab_size
116
+ self.hidden_size = hidden_size
117
+ self.intermediate_size = intermediate_size
118
+ self.projection_dim = projection_dim
119
+ self.num_hidden_layers = num_hidden_layers
120
+ self.num_attention_heads = num_attention_heads
121
+ self.max_position_embeddings = max_position_embeddings
122
+ self.layer_norm_eps = layer_norm_eps
123
+ self.hidden_act = hidden_act
124
+ self.initializer_range = initializer_range
125
+ self.initializer_factor = initializer_factor
126
+ self.q_bias=q_bias
127
+ self.k_bias=k_bias
128
+ self.v_bias=v_bias
129
+ self.post_layernorm = post_layernorm
130
+ self.attention_dropout = attention_dropout
131
+
132
+ @classmethod
133
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
134
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
135
+
136
+ # get the text config dict if we are loading from CLIPConfig
137
+ if config_dict.get("model_type") == "clip":
138
+ config_dict = config_dict["text_config"]
139
+
140
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
141
+ logger.warning(
142
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
143
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
144
+ )
145
+
146
+ return cls.from_dict(config_dict, **kwargs)
147
+
148
+
149
+ class EvaCLIPVisionConfig(PretrainedConfig):
150
+ r"""
151
+ This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
152
+ CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
153
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
154
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
155
+
156
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
157
+ documentation from [`PretrainedConfig`] for more information.
158
+
159
+ Args:
160
+ hidden_size (`int`, *optional*, defaults to 768):
161
+ Dimensionality of the encoder layers and the pooler layer.
162
+ intermediate_size (`int`, *optional*, defaults to 3072):
163
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
164
+ num_hidden_layers (`int`, *optional*, defaults to 12):
165
+ Number of hidden layers in the Transformer encoder.
166
+ num_attention_heads (`int`, *optional*, defaults to 12):
167
+ Number of attention heads for each attention layer in the Transformer encoder.
168
+ image_size (`int`, *optional*, defaults to 224):
169
+ The size (resolution) of each image.
170
+ patch_size (`int`, *optional*, defaults to 32):
171
+ The size (resolution) of each patch.
172
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
173
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
174
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
175
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
176
+ The epsilon used by the layer normalization layers.
177
+ attention_dropout (`float`, *optional*, defaults to 0.0):
178
+ The dropout ratio for the attention probabilities.
179
+ initializer_range (`float`, *optional*, defaults to 0.02):
180
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
181
+ initializer_factor (`float`, *optional*, defaults to 1):
182
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
183
+ testing).
184
+
185
+ Example:
186
+
187
+ ```python
188
+ >>> from transformers import CLIPVisionConfig, CLIPVisionModel
189
+
190
+ >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
191
+ >>> configuration = CLIPVisionConfig()
192
+
193
+ >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
194
+ >>> model = CLIPVisionModel(configuration)
195
+
196
+ >>> # Accessing the model configuration
197
+ >>> configuration = model.config
198
+ ```"""
199
+
200
+ model_type = "clip_vision_model"
201
+
202
+ def __init__(
203
+ self,
204
+ hidden_size=768,
205
+ intermediate_size=3072,
206
+ projection_dim=512,
207
+ num_hidden_layers=12,
208
+ num_attention_heads=12,
209
+ num_channels=3,
210
+ image_size=224,
211
+ patch_size=32,
212
+ hidden_act="gelu",
213
+ layer_norm_eps=1e-5,
214
+ attention_dropout=0.0,
215
+ initializer_range=0.02,
216
+ initializer_factor=1.0,
217
+ q_bias=True,
218
+ k_bias=True,
219
+ v_bias=True,
220
+ post_layernorm=False,
221
+ **kwargs,
222
+ ):
223
+ super().__init__(**kwargs)
224
+
225
+ self.hidden_size = hidden_size
226
+ self.intermediate_size = intermediate_size
227
+ self.projection_dim = projection_dim
228
+ self.num_hidden_layers = num_hidden_layers
229
+ self.num_attention_heads = num_attention_heads
230
+ self.num_channels = num_channels
231
+ self.patch_size = patch_size
232
+ self.image_size = image_size
233
+ self.initializer_range = initializer_range
234
+ self.initializer_factor = initializer_factor
235
+ self.q_bias=q_bias
236
+ self.k_bias=k_bias
237
+ self.v_bias=v_bias
238
+ self.post_layernorm = post_layernorm
239
+ self.attention_dropout = attention_dropout
240
+ self.layer_norm_eps = layer_norm_eps
241
+ self.hidden_act = hidden_act
242
+
243
+ @classmethod
244
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
245
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
246
+
247
+ # get the vision config dict if we are loading from CLIPConfig
248
+ if config_dict.get("model_type") == "clip":
249
+ config_dict = config_dict["vision_config"]
250
+
251
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
252
+ logger.warning(
253
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
254
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
255
+ )
256
+
257
+ return cls.from_dict(config_dict, **kwargs)
258
+
259
+
260
+ class EvaCLIPConfig(PretrainedConfig):
261
+ r"""
262
+ [`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
263
+ a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
264
+ a configuration with the defaults will yield a similar configuration to that of the CLIP
265
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
266
+
267
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
268
+ documentation from [`PretrainedConfig`] for more information.
269
+
270
+ Args:
271
+ text_config (`dict`, *optional*):
272
+ Dictionary of configuration options used to initialize [`CLIPTextConfig`].
273
+ vision_config (`dict`, *optional*):
274
+ Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
275
+ projection_dim (`int`, *optional*, defaults to 512):
276
+ Dimentionality of text and vision projection layers.
277
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
278
+ The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
279
+ kwargs (*optional*):
280
+ Dictionary of keyword arguments.
281
+
282
+ Example:
283
+
284
+ ```python
285
+ >>> from transformers import CLIPConfig, CLIPModel
286
+
287
+ >>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
288
+ >>> configuration = CLIPConfig()
289
+
290
+ >>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
291
+ >>> model = CLIPModel(configuration)
292
+
293
+ >>> # Accessing the model configuration
294
+ >>> configuration = model.config
295
+
296
+ >>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
297
+ >>> from transformers import CLIPTextConfig, CLIPVisionConfig
298
+
299
+ >>> # Initializing a CLIPText and CLIPVision configuration
300
+ >>> config_text = CLIPTextConfig()
301
+ >>> config_vision = CLIPVisionConfig()
302
+
303
+ >>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
304
+ ```"""
305
+
306
+ model_type = "clip"
307
+ is_composition = True
308
+
309
+ def __init__(
310
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
311
+ ):
312
+ # If `_config_dict` exist, we use them for the backward compatibility.
313
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
314
+ # of confusion!).
315
+ text_config_dict = kwargs.pop("text_config_dict", None)
316
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
317
+
318
+ super().__init__(**kwargs)
319
+
320
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
321
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
322
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
323
+ if text_config_dict is not None:
324
+ if text_config is None:
325
+ text_config = {}
326
+
327
+ # This is the complete result when using `text_config_dict`.
328
+ _text_config_dict = EvaCLIPTextConfig(**text_config_dict).to_dict()
329
+
330
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
331
+ for key, value in _text_config_dict.items():
332
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
333
+ # If specified in `text_config_dict`
334
+ if key in text_config_dict:
335
+ message = (
336
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
337
+ f'The value `text_config_dict["{key}"]` will be used instead.'
338
+ )
339
+ # If inferred from default argument values (just to be super careful)
340
+ else:
341
+ message = (
342
+ f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
343
+ f'value `text_config["{key}"]` will be overriden.'
344
+ )
345
+ logger.warning(message)
346
+
347
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
348
+ text_config.update(_text_config_dict)
349
+
350
+ if vision_config_dict is not None:
351
+ if vision_config is None:
352
+ vision_config = {}
353
+
354
+ # This is the complete result when using `vision_config_dict`.
355
+ _vision_config_dict = EvaCLIPVisionConfig(**vision_config_dict).to_dict()
356
+ # convert keys to string instead of integer
357
+ if "id2label" in _vision_config_dict:
358
+ _vision_config_dict["id2label"] = {
359
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
360
+ }
361
+
362
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
363
+ for key, value in _vision_config_dict.items():
364
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
365
+ # If specified in `vision_config_dict`
366
+ if key in vision_config_dict:
367
+ message = (
368
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
369
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
370
+ )
371
+ # If inferred from default argument values (just to be super careful)
372
+ else:
373
+ message = (
374
+ f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
375
+ f'The value `vision_config["{key}"]` will be overriden.'
376
+ )
377
+ logger.warning(message)
378
+
379
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
380
+ vision_config.update(_vision_config_dict)
381
+
382
+ if text_config is None:
383
+ text_config = {}
384
+ logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
385
+
386
+ if vision_config is None:
387
+ vision_config = {}
388
+ logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
389
+
390
+ self.text_config = EvaCLIPTextConfig(**text_config)
391
+ self.vision_config = EvaCLIPVisionConfig(**vision_config)
392
+
393
+ self.projection_dim = projection_dim
394
+ self.logit_scale_init_value = logit_scale_init_value
395
+ self.initializer_factor = 1.0
396
+
397
+ @classmethod
398
+ def from_text_vision_configs(cls, text_config: EvaCLIPTextConfig, vision_config: EvaCLIPVisionConfig, **kwargs):
399
+ r"""
400
+ Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
401
+ configuration.
402
+
403
+ Returns:
404
+ [`CLIPConfig`]: An instance of a configuration object
405
+ """
406
+
407
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
408
+
409
+ def to_dict(self):
410
+ """
411
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
412
+
413
+ Returns:
414
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
415
+ """
416
+ output = copy.deepcopy(self.__dict__)
417
+ output["text_config"] = self.text_config.to_dict()
418
+ output["vision_config"] = self.vision_config.to_dict()
419
+ output["model_type"] = self.__class__.model_type
420
+ return output
421
+
EVA02-CLIP-bigE-14-plus_s9B/convert_evaclip_pytorch_to_hf.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Part of the code was taken from:
17
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/clap/convert_clap_original_pytorch_to_hf.py
18
+
19
+ import argparse
20
+
21
+ import torch
22
+ from PIL import Image
23
+ from transformers import AutoModel, AutoConfig
24
+ from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer
25
+ from configuration_evaclip import EvaCLIPConfig
26
+ from modeling_evaclip import EvaCLIPModel
27
+
28
+
29
+ KEYS_TO_MODIFY_MAPPING = {
30
+ "cls_token":"embeddings.class_embedding",
31
+ "pos_embed":"embeddings.position_embedding.weight",
32
+ "patch_embed.proj":"embeddings.patch_embedding",
33
+ ".positional_embedding":".embeddings.position_embedding.weight",
34
+ ".token_embedding":".embeddings.token_embedding",
35
+ "text.text_projection":"text_projection.weight",
36
+ "mlp.c_fc":"mlp.fc1",
37
+ "mlp.c_proj":"mlp.fc2",
38
+ ".proj.":".out_proj.",
39
+ "q_bias":"q_proj.bias",
40
+ "v_bias":"v_proj.bias",
41
+ "out.":"out_proj.",
42
+ "norm1":"layer_norm1",
43
+ "norm2":"layer_norm2",
44
+ "ln_1":"layer_norm1",
45
+ "ln_2":"layer_norm2",
46
+ "attn":"self_attn",
47
+ "norm.":"post_layernorm.",
48
+ "ln_final":"final_layer_norm",
49
+ "visual.blocks":"vision_model.encoder.layers",
50
+ "text.transformer.resblocks":"text_model.encoder.layers",
51
+ "visual.head":"visual_projection",
52
+ "visual.":"vision_model.",
53
+ "text.":"text_model.",
54
+
55
+ }
56
+
57
+ def rename_state_dict(state_dict):
58
+ model_state_dict = {}
59
+
60
+ for key, value in state_dict.items():
61
+ # check if any key needs to be modified
62
+ for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
63
+ if key_to_modify in key:
64
+ key = key.replace(key_to_modify, new_key)
65
+ if "text_projection" in key:
66
+ model_state_dict[key] = value.T
67
+ elif "attn.qkv" in key:
68
+ # split qkv into query key and value
69
+ mixed_qkv = value
70
+ qkv_dim = mixed_qkv.size(0) // 3
71
+
72
+ query_layer = mixed_qkv[:qkv_dim]
73
+ key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
74
+ value_layer = mixed_qkv[qkv_dim * 2 :]
75
+
76
+ model_state_dict[key.replace("qkv", "q_proj")] = query_layer
77
+ model_state_dict[key.replace("qkv", "k_proj")] = key_layer
78
+ model_state_dict[key.replace("qkv", "v_proj")] = value_layer
79
+
80
+ elif "attn.in_proj" in key:
81
+ # split qkv into query key and value
82
+ mixed_qkv = value
83
+ qkv_dim = mixed_qkv.size(0) // 3
84
+
85
+ query_layer = mixed_qkv[:qkv_dim]
86
+ key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
87
+ value_layer = mixed_qkv[qkv_dim * 2 :]
88
+
89
+ model_state_dict[key.replace("in_proj_", "q_proj.")] = query_layer
90
+ model_state_dict[key.replace("in_proj_", "k_proj.")] = key_layer
91
+ model_state_dict[key.replace("in_proj_", "v_proj.")] = value_layer
92
+
93
+ elif "class_embedding" in key:
94
+ model_state_dict[key] = value[0,0,:]
95
+ elif "vision_model.embeddings.position_embedding" in key:
96
+ model_state_dict[key] = value[0,:,:]
97
+
98
+ else:
99
+ model_state_dict[key] = value
100
+
101
+ return model_state_dict
102
+
103
+ # This requires having a clone of https://github.com/baaivision/EVA/tree/master/EVA-CLIP as well as the right conda env
104
+ # Part of the code is copied from https://github.com/baaivision/EVA/blob/master/EVA-CLIP/README.md "Usage" section
105
+ def getevaclip(checkpoint_path, input_pixels, captions):
106
+ from eva_clip import create_model_and_transforms, get_tokenizer
107
+ model_name = "EVA02-CLIP-bigE-14-plus"
108
+ model, _, _ = create_model_and_transforms(model_name, checkpoint_path, force_custom_clip=True)
109
+ tokenizer = get_tokenizer(model_name)
110
+ text = tokenizer(captions)
111
+
112
+ with torch.no_grad():
113
+ text_features = model.encode_text(text)
114
+ image_features = model.encode_image(input_pixels)
115
+ image_features_normed = image_features / image_features.norm(dim=-1, keepdim=True)
116
+ text_features_normed = text_features / text_features.norm(dim=-1, keepdim=True)
117
+
118
+ label_probs = (100.0 * image_features_normed @ text_features_normed.T).softmax(dim=-1)
119
+
120
+ return label_probs
121
+
122
+ def save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config):
123
+ hf_model.save_pretrained(pytorch_dump_folder_path)
124
+ transformers_config.save_pretrained(pytorch_dump_folder_path)
125
+
126
+ def check_loaded_model(pytorch_dump_folder_path, tokenizer, processor, image, captions):
127
+ hf_config = AutoConfig.from_pretrained(pytorch_dump_folder_path, trust_remote_code=True)
128
+ hf_model = AutoModel.from_pretrained(pytorch_dump_folder_path, config=hf_config, trust_remote_code=True)
129
+ detector = pipeline(model=hf_model, task="zero-shot-image-classification", tokenizer = tokenizer, image_processor=processor)
130
+ detector_probs = detector(image, candidate_labels=captions)
131
+ print(f"text_probs loaded hf_model using pipeline: {detector_probs}")
132
+
133
+ def convert_evaclip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, image_path, save=False):
134
+ processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
135
+ image = Image.open(image_path)
136
+ captions = ["a diagram", "a dog", "a cat"]
137
+ tokenizer = CLIPTokenizer.from_pretrained(pytorch_dump_folder_path)
138
+ input_ids = tokenizer(captions, return_tensors="pt", padding=True).input_ids
139
+ input_pixels = processor( images=image, return_tensors="pt", padding=True).pixel_values
140
+
141
+ # This requires having a clone of https://github.com/baaivision/EVA/tree/master/EVA-CLIP as well as the right conda env
142
+ # original_evaclip_probs = getevaclip(checkpoint_path, input_pixels, captions)
143
+ # print(f"original_evaclip label probs: {original_evaclip_probs}")
144
+
145
+ transformers_config = EvaCLIPConfig.from_pretrained(config_path)
146
+ hf_model = EvaCLIPModel(transformers_config)
147
+ pt_model_state_dict = torch.load(checkpoint_path)
148
+ state_dict = rename_state_dict(pt_model_state_dict)
149
+
150
+ hf_model.load_state_dict(state_dict, strict=True)
151
+
152
+ with torch.no_grad():
153
+ image_features = hf_model.get_image_features(input_pixels)
154
+ text_features = hf_model.get_text_features(input_ids)
155
+ image_features /= image_features.norm(dim=-1, keepdim=True)
156
+ text_features /= text_features.norm(dim=-1, keepdim=True)
157
+
158
+ label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
159
+ print(f"hf_model label probs: {label_probs}")
160
+
161
+ if save:
162
+ save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config)
163
+
164
+ check_loaded_model(pytorch_dump_folder_path, tokenizer, processor, image, captions)
165
+
166
+ # hf_model.push_to_hub("ORGANIZATION_NAME/EVA02_CLIP_E_psz14_plus_s9B")
167
+
168
+
169
+
170
+
171
+ if __name__ == "__main__":
172
+ parser = argparse.ArgumentParser()
173
+ parser.add_argument("--pytorch_dump_folder_path", default="EVA-CLIP/EVA02-CLIP-bigE-14-plus_s9B" ,type=str, help="Path to the output PyTorch model.")
174
+ parser.add_argument("--checkpoint_path", default="EVA02_CLIP_E_psz14_plus_s9B.pt", type=str, help="Path to fairseq checkpoint" )
175
+ parser.add_argument("--config_path", default='EVA-CLIP/EVA02-CLIP-bigE-14-plus_s9B', type=str, help="Path to hf config.json of model to convert")
176
+ parser.add_argument("--image_path", default='EVA-CLIP/EVA02-CLIP-bigE-14-plus_s9B/CLIP.png', type=str, help="Path to image")
177
+ parser.add_argument("--save", default=False, type=str, help="Path to image")
178
+
179
+ args = parser.parse_args()
180
+
181
+ convert_evaclip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.image_path, args.save)
EVA02-CLIP-bigE-14-plus_s9B/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
EVA02-CLIP-bigE-14-plus_s9B/modeling_evaclip.py ADDED
@@ -0,0 +1,1428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch EvaCLIP model."""
16
+ # Code mainly taken from https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py#L943
17
+ # and adjusteed for EvaClip
18
+
19
+
20
+ from dataclasses import dataclass
21
+ from typing import Any, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+
27
+ from transformers.activations import ACT2FN
28
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
29
+ from transformers.modeling_utils import PreTrainedModel
30
+ from transformers.utils import (
31
+ ModelOutput,
32
+ add_start_docstrings,
33
+ add_start_docstrings_to_model_forward,
34
+ logging,
35
+ replace_return_docstrings,
36
+ )
37
+ from configuration_evaclip import EvaCLIPConfig, EvaCLIPTextConfig, EvaCLIPVisionConfig
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CHECKPOINT_FOR_DOC = "HuggingFaceM4/Eva02-CLIP-bigE-14-plus_s9B"
42
+
43
+ Eva_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
44
+ "Eva02-CLIP-bigE-14-plus_s9B",
45
+ ]
46
+
47
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
48
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
49
+ """
50
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
51
+ """
52
+ bsz, src_len = mask.size()
53
+ tgt_len = tgt_len if tgt_len is not None else src_len
54
+
55
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
56
+
57
+ inverted_mask = 1.0 - expanded_mask
58
+
59
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
60
+
61
+
62
+ # contrastive loss function, adapted from
63
+ # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
64
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
65
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
66
+
67
+
68
+ def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
69
+ caption_loss = contrastive_loss(similarity)
70
+ image_loss = contrastive_loss(similarity.t())
71
+ return (caption_loss + image_loss) / 2.0
72
+
73
+
74
+ @dataclass
75
+ class EvaCLIPVisionModelOutput(ModelOutput):
76
+ """
77
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
78
+
79
+ Args:
80
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
81
+ The image embeddings obtained by applying the projection layer to the pooler_output.
82
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
83
+ Sequence of hidden-states at the output of the last layer of the model.
84
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
85
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
86
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
87
+
88
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
89
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
90
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
91
+ sequence_length)`.
92
+
93
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
94
+ heads.
95
+ """
96
+
97
+ image_embeds: Optional[torch.FloatTensor] = None
98
+ last_hidden_state: torch.FloatTensor = None
99
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
100
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
101
+
102
+
103
+ @dataclass
104
+ class EvaCLIPTextModelOutput(ModelOutput):
105
+ """
106
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
107
+
108
+ Args:
109
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
110
+ The text embeddings obtained by applying the projection layer to the pooler_output.
111
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
112
+ Sequence of hidden-states at the output of the last layer of the model.
113
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
114
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
115
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
116
+
117
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
118
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
119
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
120
+ sequence_length)`.
121
+
122
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
123
+ heads.
124
+ """
125
+
126
+ text_embeds: Optional[torch.FloatTensor] = None
127
+ last_hidden_state: torch.FloatTensor = None
128
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
129
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
130
+
131
+
132
+ @dataclass
133
+ class EvaCLIPOutput(ModelOutput):
134
+ """
135
+ Args:
136
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
137
+ Contrastive loss for image-text similarity.
138
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
139
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
140
+ similarity scores.
141
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
142
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
143
+ similarity scores.
144
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
145
+ The text embeddings obtained by applying the projection layer to the pooled output of [`EvaCLIPTextModel`].
146
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
147
+ The image embeddings obtained by applying the projection layer to the pooled output of [`EvaCLIPVisionModel`].
148
+ text_model_output(`BaseModelOutputWithPooling`):
149
+ The output of the [`EvaCLIPTextModel`].
150
+ vision_model_output(`BaseModelOutputWithPooling`):
151
+ The output of the [`EvaCLIPVisionModel`].
152
+ """
153
+
154
+ loss: Optional[torch.FloatTensor] = None
155
+ logits_per_image: torch.FloatTensor = None
156
+ logits_per_text: torch.FloatTensor = None
157
+ text_embeds: torch.FloatTensor = None
158
+ image_embeds: torch.FloatTensor = None
159
+ text_model_output: BaseModelOutputWithPooling = None
160
+ vision_model_output: BaseModelOutputWithPooling = None
161
+
162
+ def to_tuple(self) -> Tuple[Any]:
163
+ return tuple(
164
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
165
+ for k in self.keys()
166
+ )
167
+
168
+
169
+ class EvaCLIPVisionEmbeddings(nn.Module):
170
+ def __init__(self, config: EvaCLIPVisionConfig):
171
+ super().__init__()
172
+ self.config = config
173
+ self.embed_dim = config.hidden_size
174
+ self.image_size = config.image_size
175
+ self.patch_size = config.patch_size
176
+
177
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
178
+
179
+ self.patch_embedding = nn.Conv2d(
180
+ in_channels=config.num_channels,
181
+ out_channels=self.embed_dim,
182
+ kernel_size=self.patch_size,
183
+ stride=self.patch_size,
184
+ bias=True,
185
+ )
186
+
187
+ self.num_patches = (self.image_size // self.patch_size) ** 2
188
+ self.num_positions = self.num_patches + 1
189
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
190
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent = False)
191
+
192
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
193
+ batch_size = pixel_values.shape[0]
194
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
195
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
196
+
197
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
198
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
199
+ embeddings = embeddings + self.position_embedding(self.position_ids)
200
+ return embeddings
201
+
202
+
203
+ class EvaCLIPTextEmbeddings(nn.Module):
204
+ def __init__(self, config: EvaCLIPTextConfig):
205
+ super().__init__()
206
+ embed_dim = config.hidden_size
207
+
208
+ self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
209
+ self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
210
+
211
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
212
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False)
213
+
214
+ def forward(
215
+ self,
216
+ input_ids: Optional[torch.LongTensor] = None,
217
+ position_ids: Optional[torch.LongTensor] = None,
218
+ inputs_embeds: Optional[torch.FloatTensor] = None,
219
+ ) -> torch.Tensor:
220
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
221
+
222
+ if position_ids is None:
223
+ position_ids = self.position_ids[:, :seq_length]
224
+
225
+ if inputs_embeds is None:
226
+ inputs_embeds = self.token_embedding(input_ids)
227
+
228
+ position_embeddings = self.position_embedding(position_ids)
229
+ embeddings = inputs_embeds + position_embeddings
230
+
231
+ return embeddings
232
+
233
+
234
+ class EvaCLIPAttention(nn.Module):
235
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
236
+
237
+ def __init__(self, config):
238
+ super().__init__()
239
+ self.config = config
240
+ self.embed_dim = config.hidden_size
241
+ self.num_heads = config.num_attention_heads
242
+ self.head_dim = self.embed_dim // self.num_heads
243
+ if self.head_dim * self.num_heads != self.embed_dim:
244
+ raise ValueError(
245
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
246
+ f" {self.num_heads})."
247
+ )
248
+ self.scale = self.head_dim**-0.5
249
+ self.dropout = config.attention_dropout
250
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.k_bias)
251
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.v_bias)
252
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.q_bias)
253
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
254
+
255
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
256
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
257
+
258
+ def forward(
259
+ self,
260
+ hidden_states: torch.Tensor,
261
+ attention_mask: Optional[torch.Tensor] = None,
262
+ causal_attention_mask: Optional[torch.Tensor] = None,
263
+ output_attentions: Optional[bool] = False,
264
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
265
+ """Input shape: Batch x Time x Channel"""
266
+
267
+ bsz, tgt_len, embed_dim = hidden_states.size()
268
+
269
+ # get query proj
270
+ query_states = self.q_proj(hidden_states) * self.scale
271
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
272
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
273
+
274
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
275
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
276
+ key_states = key_states.view(*proj_shape)
277
+ value_states = value_states.view(*proj_shape)
278
+
279
+ src_len = key_states.size(1)
280
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
281
+
282
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
283
+ raise ValueError(
284
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
285
+ f" {attn_weights.size()}"
286
+ )
287
+
288
+ # apply the causal_attention_mask first
289
+ if causal_attention_mask is not None:
290
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
291
+ raise ValueError(
292
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
293
+ f" {causal_attention_mask.size()}"
294
+ )
295
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
296
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
297
+
298
+ if attention_mask is not None:
299
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
300
+ raise ValueError(
301
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
302
+ )
303
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
304
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
305
+
306
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
307
+
308
+ if output_attentions:
309
+ # this operation is a bit akward, but it's required to
310
+ # make sure that attn_weights keeps its gradient.
311
+ # In order to do so, attn_weights have to reshaped
312
+ # twice and have to be reused in the following
313
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
314
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
315
+ else:
316
+ attn_weights_reshaped = None
317
+
318
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
319
+
320
+ attn_output = torch.bmm(attn_probs, value_states)
321
+
322
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
323
+ raise ValueError(
324
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
325
+ f" {attn_output.size()}"
326
+ )
327
+
328
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
329
+ attn_output = attn_output.transpose(1, 2)
330
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
331
+
332
+ attn_output = self.out_proj(attn_output)
333
+
334
+ return attn_output, attn_weights_reshaped
335
+
336
+ class EvaCLIPTextAttention(nn.Module):
337
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
338
+
339
+ def __init__(self, config):
340
+ super().__init__()
341
+ self.config = config
342
+ self.embed_dim = config.hidden_size
343
+ self.num_heads = config.num_attention_heads
344
+ self.head_dim = self.embed_dim // self.num_heads
345
+ if self.head_dim * self.num_heads != self.embed_dim:
346
+ raise ValueError(
347
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
348
+ f" {self.num_heads})."
349
+ )
350
+ self.scale = self.head_dim**-0.5
351
+ self.dropout = config.attention_dropout
352
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.k_bias)
353
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.v_bias)
354
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.q_bias)
355
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
356
+
357
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
358
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
359
+
360
+ def forward(
361
+ self,
362
+ hidden_states: torch.Tensor,
363
+ attention_mask: Optional[torch.Tensor] = None,
364
+ causal_attention_mask: Optional[torch.Tensor] = None,
365
+ output_attentions: Optional[bool] = False,
366
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
367
+ """Input shape: Batch x Time x Channel"""
368
+
369
+ bsz, tgt_len, embed_dim = hidden_states.size()
370
+
371
+ # get query proj
372
+ query_states = self.q_proj(hidden_states) * self.scale
373
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
374
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
375
+
376
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
377
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
378
+ key_states = key_states.view(*proj_shape)
379
+ value_states = value_states.view(*proj_shape)
380
+
381
+ src_len = key_states.size(1)
382
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
383
+
384
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
385
+ raise ValueError(
386
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
387
+ f" {attn_weights.size()}"
388
+ )
389
+
390
+ # apply the causal_attention_mask first
391
+ if causal_attention_mask is not None:
392
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
393
+ raise ValueError(
394
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
395
+ f" {causal_attention_mask.size()}"
396
+ )
397
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
398
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
399
+
400
+ if attention_mask is not None:
401
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
402
+ raise ValueError(
403
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
404
+ )
405
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
406
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
407
+
408
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
409
+
410
+ if output_attentions:
411
+ # this operation is a bit akward, but it's required to
412
+ # make sure that attn_weights keeps its gradient.
413
+ # In order to do so, attn_weights have to reshaped
414
+ # twice and have to be reused in the following
415
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
416
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
417
+ else:
418
+ attn_weights_reshaped = None
419
+
420
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
421
+
422
+ attn_output = torch.bmm(attn_probs, value_states)
423
+
424
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
425
+ raise ValueError(
426
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
427
+ f" {attn_output.size()}"
428
+ )
429
+
430
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
431
+ attn_output = attn_output.transpose(1, 2)
432
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
433
+
434
+ attn_output = self.out_proj(attn_output)
435
+
436
+ return attn_output, attn_weights_reshaped
437
+
438
+ class EvaCLIPMLP(nn.Module):
439
+ def __init__(self, config):
440
+ super().__init__()
441
+ self.config = config
442
+ self.activation_fn = ACT2FN[config.hidden_act]
443
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
444
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
445
+
446
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
447
+ hidden_states = self.fc1(hidden_states)
448
+ hidden_states = self.activation_fn(hidden_states)
449
+ hidden_states = self.fc2(hidden_states)
450
+ return hidden_states
451
+
452
+
453
+ class EvaCLIPEncoderLayer(nn.Module):
454
+ def __init__(self, config: EvaCLIPConfig):
455
+ super().__init__()
456
+ self.config = config
457
+ self.embed_dim = config.hidden_size
458
+ self.post_layernorm = config.post_layernorm if config.post_layernorm is not None else False
459
+ self.self_attn = EvaCLIPAttention(config)
460
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
461
+ self.mlp = EvaCLIPMLP(config)
462
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
463
+
464
+ def forward(
465
+ self,
466
+ hidden_states: torch.Tensor,
467
+ attention_mask: torch.Tensor,
468
+ causal_attention_mask: torch.Tensor,
469
+ output_attentions: Optional[bool] = False,
470
+ ) -> Tuple[torch.FloatTensor]:
471
+ """
472
+ Args:
473
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
474
+ attention_mask (`torch.FloatTensor`): attention mask of size
475
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
476
+ `(config.encoder_attention_heads,)`.
477
+ output_attentions (`bool`, *optional*):
478
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
479
+ returned tensors for more detail.
480
+ """
481
+ residual = hidden_states
482
+
483
+ if not self.post_layernorm:
484
+ hidden_states = self.layer_norm1(hidden_states)
485
+ hidden_states, attn_weights = self.self_attn(
486
+ hidden_states=hidden_states,
487
+ attention_mask=attention_mask,
488
+ causal_attention_mask=causal_attention_mask,
489
+ output_attentions=output_attentions,
490
+ )
491
+ if self.post_layernorm:
492
+ hidden_states = self.layer_norm1(hidden_states)
493
+ hidden_states = residual + hidden_states
494
+ residual = hidden_states
495
+ if not self.post_layernorm:
496
+ hidden_states = self.layer_norm2(hidden_states)
497
+ hidden_states = self.mlp(hidden_states)
498
+ if self.post_layernorm:
499
+ hidden_states = self.layer_norm2(hidden_states)
500
+ hidden_states = residual + hidden_states
501
+
502
+ outputs = (hidden_states,)
503
+
504
+ if output_attentions:
505
+ outputs += (attn_weights,)
506
+
507
+ return outputs
508
+
509
+
510
+ class EvaCLIPPreTrainedModel(PreTrainedModel):
511
+ """
512
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
513
+ models.
514
+ """
515
+
516
+ config_class = EvaCLIPConfig
517
+ base_model_prefix = "clip"
518
+ supports_gradient_checkpointing = True
519
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
520
+
521
+ def _init_weights(self, module):
522
+ """Initialize the weights"""
523
+ factor = self.config.initializer_factor
524
+ if isinstance(module, EvaCLIPTextEmbeddings):
525
+ module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
526
+ module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
527
+ elif isinstance(module, EvaCLIPVisionEmbeddings):
528
+ factor = self.config.initializer_factor
529
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
530
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
531
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
532
+ elif isinstance(module, EvaCLIPAttention):
533
+ factor = self.config.initializer_factor
534
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
535
+ out_proj_std = (module.embed_dim**-0.5) * factor
536
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
537
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
538
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
539
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
540
+ elif isinstance(module, EvaCLIPMLP):
541
+ factor = self.config.initializer_factor
542
+ in_proj_std = (
543
+ (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
544
+ )
545
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
546
+ nn.init.normal_(module.fc1.weight, std=fc_std)
547
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
548
+ elif isinstance(module, EvaCLIPModel):
549
+ nn.init.normal_(
550
+ module.text_projection.weight,
551
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
552
+ )
553
+ nn.init.normal_(
554
+ module.visual_projection.weight,
555
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
556
+ )
557
+ elif isinstance(module, EvaCLIPVisionModelWithProjection):
558
+ nn.init.normal_(
559
+ module.visual_projection.weight,
560
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
561
+ )
562
+ elif isinstance(module, EvaCLIPTextModelWithProjection):
563
+ nn.init.normal_(
564
+ module.text_projection.weight,
565
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
566
+ )
567
+
568
+ if isinstance(module, nn.LayerNorm):
569
+ module.bias.data.zero_()
570
+ module.weight.data.fill_(1.0)
571
+ if isinstance(module, nn.Linear) and module.bias is not None:
572
+ module.bias.data.zero_()
573
+
574
+ def _set_gradient_checkpointing(self, module, value=False):
575
+ if isinstance(module, EvaCLIPEncoder):
576
+ module.gradient_checkpointing = value
577
+
578
+
579
+ EvaCLIP_START_DOCSTRING = r"""
580
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
581
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
582
+ etc.)
583
+
584
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
585
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
586
+ and behavior.
587
+
588
+ Parameters:
589
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
590
+ Initializing with a config file does not load the weights associated with the model, only the
591
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
592
+ """
593
+
594
+ EvaCLIP_TEXT_INPUTS_DOCSTRING = r"""
595
+ Args:
596
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
597
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
598
+ it.
599
+
600
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
601
+ [`PreTrainedTokenizer.__call__`] for details.
602
+
603
+ [What are input IDs?](../glossary#input-ids)
604
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
605
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
606
+
607
+ - 1 for tokens that are **not masked**,
608
+ - 0 for tokens that are **masked**.
609
+
610
+ [What are attention masks?](../glossary#attention-mask)
611
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
612
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
613
+ config.max_position_embeddings - 1]`.
614
+
615
+ [What are position IDs?](../glossary#position-ids)
616
+ output_attentions (`bool`, *optional*):
617
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
618
+ tensors for more detail.
619
+ output_hidden_states (`bool`, *optional*):
620
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
621
+ more detail.
622
+ return_dict (`bool`, *optional*):
623
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
624
+ """
625
+
626
+ EvaCLIP_VISION_INPUTS_DOCSTRING = r"""
627
+ Args:
628
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
629
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
630
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
631
+ output_attentions (`bool`, *optional*):
632
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
633
+ tensors for more detail.
634
+ output_hidden_states (`bool`, *optional*):
635
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
636
+ more detail.
637
+ return_dict (`bool`, *optional*):
638
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
639
+ """
640
+
641
+ EvaCLIP_INPUTS_DOCSTRING = r"""
642
+ Args:
643
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
644
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
645
+ it.
646
+
647
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
648
+ [`PreTrainedTokenizer.__call__`] for details.
649
+
650
+ [What are input IDs?](../glossary#input-ids)
651
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
652
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
653
+
654
+ - 1 for tokens that are **not masked**,
655
+ - 0 for tokens that are **masked**.
656
+
657
+ [What are attention masks?](../glossary#attention-mask)
658
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
659
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
660
+ config.max_position_embeddings - 1]`.
661
+
662
+ [What are position IDs?](../glossary#position-ids)
663
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
664
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
665
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
666
+ return_loss (`bool`, *optional*):
667
+ Whether or not to return the contrastive loss.
668
+ output_attentions (`bool`, *optional*):
669
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
670
+ tensors for more detail.
671
+ output_hidden_states (`bool`, *optional*):
672
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
673
+ more detail.
674
+ return_dict (`bool`, *optional*):
675
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
676
+ """
677
+
678
+
679
+ class EvaCLIPEncoder(nn.Module):
680
+ """
681
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
682
+ [`CLIPEncoderLayer`].
683
+
684
+ Args:
685
+ config: CLIPConfig
686
+ """
687
+
688
+ def __init__(self, config: EvaCLIPConfig):
689
+ super().__init__()
690
+ self.config = config
691
+ self.layers = nn.ModuleList([EvaCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
692
+ self.gradient_checkpointing = False
693
+
694
+ def forward(
695
+ self,
696
+ inputs_embeds,
697
+ attention_mask: Optional[torch.Tensor] = None,
698
+ causal_attention_mask: Optional[torch.Tensor] = None,
699
+ output_attentions: Optional[bool] = None,
700
+ output_hidden_states: Optional[bool] = None,
701
+ return_dict: Optional[bool] = None,
702
+ ) -> Union[Tuple, BaseModelOutput]:
703
+ r"""
704
+ Args:
705
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
706
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
707
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
708
+ than the model's internal embedding lookup matrix.
709
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
710
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
711
+
712
+ - 1 for tokens that are **not masked**,
713
+ - 0 for tokens that are **masked**.
714
+
715
+ [What are attention masks?](../glossary#attention-mask)
716
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
717
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
718
+
719
+ - 1 for tokens that are **not masked**,
720
+ - 0 for tokens that are **masked**.
721
+
722
+ [What are attention masks?](../glossary#attention-mask)
723
+ output_attentions (`bool`, *optional*):
724
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
725
+ returned tensors for more detail.
726
+ output_hidden_states (`bool`, *optional*):
727
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
728
+ for more detail.
729
+ return_dict (`bool`, *optional*):
730
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
731
+ """
732
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
733
+ output_hidden_states = (
734
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
735
+ )
736
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
737
+
738
+ encoder_states = () if output_hidden_states else None
739
+ all_attentions = () if output_attentions else None
740
+
741
+ hidden_states = inputs_embeds
742
+ for idx, encoder_layer in enumerate(self.layers):
743
+ if output_hidden_states:
744
+ encoder_states = encoder_states + (hidden_states,)
745
+ if self.gradient_checkpointing and self.training:
746
+
747
+ def create_custom_forward(module):
748
+ def custom_forward(*inputs):
749
+ return module(*inputs, output_attentions)
750
+
751
+ return custom_forward
752
+
753
+ layer_outputs = torch.utils.checkpoint.checkpoint(
754
+ create_custom_forward(encoder_layer),
755
+ hidden_states,
756
+ attention_mask,
757
+ causal_attention_mask,
758
+ )
759
+ else:
760
+ layer_outputs = encoder_layer(
761
+ hidden_states,
762
+ attention_mask,
763
+ causal_attention_mask,
764
+ output_attentions=output_attentions,
765
+ )
766
+
767
+ hidden_states = layer_outputs[0]
768
+
769
+ if output_attentions:
770
+ all_attentions = all_attentions + (layer_outputs[1],)
771
+
772
+ if output_hidden_states:
773
+ encoder_states = encoder_states + (hidden_states,)
774
+
775
+ if not return_dict:
776
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
777
+ return BaseModelOutput(
778
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
779
+ )
780
+
781
+
782
+ class EvaCLIPTextTransformer(nn.Module):
783
+ def __init__(self, config: EvaCLIPTextConfig):
784
+ super().__init__()
785
+ self.config = config
786
+ embed_dim = config.hidden_size
787
+ self.embeddings = EvaCLIPTextEmbeddings(config)
788
+ self.encoder = EvaCLIPEncoder(config)
789
+ self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
790
+
791
+ @add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING)
792
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPTextConfig)
793
+ def forward(
794
+ self,
795
+ input_ids: Optional[torch.Tensor] = None,
796
+ attention_mask: Optional[torch.Tensor] = None,
797
+ position_ids: Optional[torch.Tensor] = None,
798
+ output_attentions: Optional[bool] = None,
799
+ output_hidden_states: Optional[bool] = None,
800
+ return_dict: Optional[bool] = None,
801
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
802
+ r"""
803
+ Returns:
804
+
805
+ """
806
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
807
+ output_hidden_states = (
808
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
809
+ )
810
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
811
+
812
+ if input_ids is None:
813
+ raise ValueError("You have to specify input_ids")
814
+
815
+ input_shape = input_ids.size()
816
+ input_ids = input_ids.view(-1, input_shape[-1])
817
+
818
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
819
+
820
+ bsz, seq_len = input_shape
821
+ # CLIP's text model uses causal mask, prepare it here.
822
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
823
+ causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
824
+ hidden_states.device
825
+ )
826
+ # expand attention_mask
827
+ if attention_mask is not None:
828
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
829
+ attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
830
+
831
+ encoder_outputs = self.encoder(
832
+ inputs_embeds=hidden_states,
833
+ attention_mask=attention_mask,
834
+ causal_attention_mask=causal_attention_mask,
835
+ output_attentions=output_attentions,
836
+ output_hidden_states=output_hidden_states,
837
+ return_dict=return_dict,
838
+ )
839
+
840
+ last_hidden_state = encoder_outputs[0]
841
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
842
+
843
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
844
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
845
+ # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
846
+ pooled_output = last_hidden_state[
847
+ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
848
+ input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
849
+ ]
850
+
851
+ if not return_dict:
852
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
853
+
854
+ return BaseModelOutputWithPooling(
855
+ last_hidden_state=last_hidden_state,
856
+ pooler_output=pooled_output,
857
+ hidden_states=encoder_outputs.hidden_states,
858
+ attentions=encoder_outputs.attentions,
859
+ )
860
+
861
+ def _build_causal_attention_mask(self, bsz, seq_len, dtype):
862
+ # lazily create causal attention mask, with full attention between the vision tokens
863
+ # pytorch uses additive attention mask; fill with -inf
864
+ mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
865
+ mask.fill_(torch.tensor(torch.finfo(dtype).min))
866
+ mask.triu_(1) # zero out the lower diagonal
867
+ mask = mask.unsqueeze(1) # expand mask
868
+ return mask
869
+
870
+
871
+ @add_start_docstrings(
872
+ """The text model from EvaCLIP without any head or projection on top.""",
873
+ EvaCLIP_START_DOCSTRING,
874
+ )
875
+ class EvaCLIPTextModel(EvaCLIPPreTrainedModel):
876
+ config_class = EvaCLIPTextConfig
877
+
878
+ _no_split_modules = ["EvaCLIPEncoderLayer"]
879
+
880
+ def __init__(self, config: EvaCLIPTextConfig):
881
+ super().__init__(config)
882
+ self.text_model = EvaCLIPTextTransformer(config)
883
+ # Initialize weights and apply final processing
884
+ self.post_init()
885
+
886
+ def get_input_embeddings(self) -> nn.Module:
887
+ return self.text_model.embeddings.token_embedding
888
+
889
+ def set_input_embeddings(self, value):
890
+ self.text_model.embeddings.token_embedding = value
891
+
892
+ @add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING)
893
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPTextConfig)
894
+ def forward(
895
+ self,
896
+ input_ids: Optional[torch.Tensor] = None,
897
+ attention_mask: Optional[torch.Tensor] = None,
898
+ position_ids: Optional[torch.Tensor] = None,
899
+ output_attentions: Optional[bool] = None,
900
+ output_hidden_states: Optional[bool] = None,
901
+ return_dict: Optional[bool] = None,
902
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
903
+ r"""
904
+ Returns:
905
+
906
+ Examples:
907
+
908
+ ```python
909
+ >>> from transformers import AutoTokenizer, CLIPTextModel
910
+
911
+ >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
912
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
913
+
914
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
915
+
916
+ >>> outputs = model(**inputs)
917
+ >>> last_hidden_state = outputs.last_hidden_state
918
+ >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
919
+ ```"""
920
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
921
+
922
+ return self.text_model(
923
+ input_ids=input_ids,
924
+ attention_mask=attention_mask,
925
+ position_ids=position_ids,
926
+ output_attentions=output_attentions,
927
+ output_hidden_states=output_hidden_states,
928
+ return_dict=return_dict,
929
+ )
930
+
931
+
932
+ class EvaCLIPVisionTransformer(nn.Module):
933
+ def __init__(self, config: EvaCLIPVisionConfig):
934
+ super().__init__()
935
+ self.config = config
936
+ embed_dim = config.hidden_size
937
+
938
+ self.embeddings = EvaCLIPVisionEmbeddings(config)
939
+ self.encoder = EvaCLIPEncoder(config)
940
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
941
+
942
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
943
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPVisionConfig)
944
+ def forward(
945
+ self,
946
+ pixel_values: Optional[torch.FloatTensor] = None,
947
+ output_attentions: Optional[bool] = None,
948
+ output_hidden_states: Optional[bool] = None,
949
+ return_dict: Optional[bool] = None,
950
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
951
+ r"""
952
+ Returns:
953
+
954
+ """
955
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
956
+ output_hidden_states = (
957
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
958
+ )
959
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
960
+
961
+ if pixel_values is None:
962
+ raise ValueError("You have to specify pixel_values")
963
+
964
+ hidden_states = self.embeddings(pixel_values)
965
+
966
+ encoder_outputs = self.encoder(
967
+ inputs_embeds=hidden_states,
968
+ output_attentions=output_attentions,
969
+ output_hidden_states=output_hidden_states,
970
+ return_dict=return_dict,
971
+ )
972
+
973
+ last_hidden_state = encoder_outputs[0]
974
+ pooled_output = last_hidden_state[:, 0, :]
975
+ pooled_output = self.post_layernorm(pooled_output)
976
+
977
+ if not return_dict:
978
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
979
+
980
+ return BaseModelOutputWithPooling(
981
+ last_hidden_state=last_hidden_state,
982
+ pooler_output=pooled_output,
983
+ hidden_states=encoder_outputs.hidden_states,
984
+ attentions=encoder_outputs.attentions,
985
+ )
986
+
987
+
988
+ @add_start_docstrings(
989
+ """The vision model from EvaCLIP without any head or projection on top.""",
990
+ EvaCLIP_START_DOCSTRING,
991
+ )
992
+ class EvaCLIPVisionModel(EvaCLIPPreTrainedModel):
993
+ config_class = EvaCLIPVisionConfig
994
+ main_input_name = "pixel_values"
995
+
996
+ def __init__(self, config: EvaCLIPVisionConfig):
997
+ super().__init__(config)
998
+ self.vision_model = EvaCLIPVisionTransformer(config)
999
+ # Initialize weights and apply final processing
1000
+ self.post_init()
1001
+
1002
+ def get_input_embeddings(self) -> nn.Module:
1003
+ return self.vision_model.embeddings.patch_embedding
1004
+
1005
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
1006
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPVisionConfig)
1007
+ def forward(
1008
+ self,
1009
+ pixel_values: Optional[torch.FloatTensor] = None,
1010
+ output_attentions: Optional[bool] = None,
1011
+ output_hidden_states: Optional[bool] = None,
1012
+ return_dict: Optional[bool] = None,
1013
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1014
+ r"""
1015
+ Returns:
1016
+
1017
+ Examples:
1018
+
1019
+ ```python
1020
+ >>> from PIL import Image
1021
+ >>> import requests
1022
+ >>> from transformers import AutoProcessor, CLIPVisionModel
1023
+
1024
+ >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
1025
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1026
+
1027
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1028
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1029
+
1030
+ >>> inputs = processor(images=image, return_tensors="pt")
1031
+
1032
+ >>> outputs = model(**inputs)
1033
+ >>> last_hidden_state = outputs.last_hidden_state
1034
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
1035
+ ```"""
1036
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1037
+
1038
+ return self.vision_model(
1039
+ pixel_values=pixel_values,
1040
+ output_attentions=output_attentions,
1041
+ output_hidden_states=output_hidden_states,
1042
+ return_dict=return_dict,
1043
+ )
1044
+
1045
+
1046
+ @add_start_docstrings(EvaCLIP_START_DOCSTRING)
1047
+ class EvaCLIPModel(EvaCLIPPreTrainedModel):
1048
+ config_class = EvaCLIPConfig
1049
+
1050
+ def __init__(self, config: EvaCLIPConfig):
1051
+ super().__init__(config)
1052
+
1053
+ if not (type(config.text_config).__name__ == "EvaCLIPTextConfig"):
1054
+ raise ValueError(
1055
+ "config.text_config is expected to be of type EvaCLIPTextConfig but is of type"
1056
+ f" {type(config.text_config)}."
1057
+ )
1058
+
1059
+ if not (type(config.vision_config).__name__ == "EvaCLIPVisionConfig"):
1060
+ raise ValueError(
1061
+ "config.vision_config is expected to be of type EvaCLIPVisionConfig but is of type"
1062
+ f" {type(config.vision_config)}."
1063
+ )
1064
+
1065
+ text_config = config.text_config
1066
+ vision_config = config.vision_config
1067
+
1068
+ self.projection_dim = config.projection_dim
1069
+ self.text_embed_dim = text_config.hidden_size
1070
+ self.vision_embed_dim = vision_config.hidden_size
1071
+
1072
+ self.text_model = EvaCLIPTextTransformer(text_config)
1073
+ self.vision_model = EvaCLIPVisionTransformer(vision_config)
1074
+
1075
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=True)
1076
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
1077
+ self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
1078
+
1079
+ # Initialize weights and apply final processing
1080
+ self.post_init()
1081
+
1082
+ @add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING)
1083
+ def get_text_features(
1084
+ self,
1085
+ input_ids: Optional[torch.Tensor] = None,
1086
+ attention_mask: Optional[torch.Tensor] = None,
1087
+ position_ids: Optional[torch.Tensor] = None,
1088
+ output_attentions: Optional[bool] = None,
1089
+ output_hidden_states: Optional[bool] = None,
1090
+ return_dict: Optional[bool] = None,
1091
+ ) -> torch.FloatTensor:
1092
+ r"""
1093
+ Returns:
1094
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
1095
+ applying the projection layer to the pooled output of [`CLIPTextModel`].
1096
+
1097
+ Examples:
1098
+
1099
+ ```python
1100
+ >>> from transformers import AutoTokenizer, CLIPModel
1101
+
1102
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1103
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1104
+
1105
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
1106
+ >>> text_features = model.get_text_features(**inputs)
1107
+ ```"""
1108
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
1109
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1110
+ output_hidden_states = (
1111
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1112
+ )
1113
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1114
+
1115
+ text_outputs = self.text_model(
1116
+ input_ids=input_ids,
1117
+ attention_mask=attention_mask,
1118
+ position_ids=position_ids,
1119
+ output_attentions=output_attentions,
1120
+ output_hidden_states=output_hidden_states,
1121
+ return_dict=return_dict,
1122
+ )
1123
+
1124
+ pooled_output = text_outputs[1]
1125
+ text_features = self.text_projection(pooled_output)
1126
+
1127
+ return text_features
1128
+
1129
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
1130
+ def get_image_features(
1131
+ self,
1132
+ pixel_values: Optional[torch.FloatTensor] = None,
1133
+ output_attentions: Optional[bool] = None,
1134
+ output_hidden_states: Optional[bool] = None,
1135
+ return_dict: Optional[bool] = None,
1136
+ ) -> torch.FloatTensor:
1137
+ r"""
1138
+ Returns:
1139
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
1140
+ applying the projection layer to the pooled output of [`EvaCLIPVisionModel`].
1141
+
1142
+ Examples:
1143
+
1144
+ ```python
1145
+ >>> from PIL import Image
1146
+ >>> import requests
1147
+ >>> from transformers import AutoProcessor, CLIPModel
1148
+
1149
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1150
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1151
+
1152
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1153
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1154
+
1155
+ >>> inputs = processor(images=image, return_tensors="pt")
1156
+
1157
+ >>> image_features = model.get_image_features(**inputs)
1158
+ ```"""
1159
+ # Use EvaCLIP model's config for some fields (if specified) instead of those of vision & text components.
1160
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1161
+ output_hidden_states = (
1162
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1163
+ )
1164
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1165
+
1166
+ vision_outputs = self.vision_model(
1167
+ pixel_values=pixel_values,
1168
+ output_attentions=output_attentions,
1169
+ output_hidden_states=output_hidden_states,
1170
+ return_dict=return_dict,
1171
+ )
1172
+
1173
+ pooled_output = vision_outputs[1] # pooled_output
1174
+ image_features = self.visual_projection(pooled_output)
1175
+
1176
+ return image_features
1177
+
1178
+ @add_start_docstrings_to_model_forward(EvaCLIP_INPUTS_DOCSTRING)
1179
+ @replace_return_docstrings(output_type=EvaCLIPOutput, config_class=EvaCLIPConfig)
1180
+ def forward(
1181
+ self,
1182
+ input_ids: Optional[torch.LongTensor] = None,
1183
+ pixel_values: Optional[torch.FloatTensor] = None,
1184
+ attention_mask: Optional[torch.Tensor] = None,
1185
+ position_ids: Optional[torch.LongTensor] = None,
1186
+ return_loss: Optional[bool] = None,
1187
+ output_attentions: Optional[bool] = None,
1188
+ output_hidden_states: Optional[bool] = None,
1189
+ return_dict: Optional[bool] = None,
1190
+ ) -> Union[Tuple, EvaCLIPOutput]:
1191
+ r"""
1192
+ Returns:
1193
+
1194
+ Examples:
1195
+
1196
+ ```python
1197
+ >>> from PIL import Image
1198
+ >>> import requests
1199
+ >>> from transformers import AutoProcessor, CLIPModel
1200
+
1201
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1202
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1203
+
1204
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1205
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1206
+
1207
+ >>> inputs = processor(
1208
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
1209
+ ... )
1210
+
1211
+ >>> outputs = model(**inputs)
1212
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
1213
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
1214
+ ```"""
1215
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
1216
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1217
+ output_hidden_states = (
1218
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1219
+ )
1220
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1221
+
1222
+ vision_outputs = self.vision_model(
1223
+ pixel_values=pixel_values,
1224
+ output_attentions=output_attentions,
1225
+ output_hidden_states=output_hidden_states,
1226
+ return_dict=return_dict,
1227
+ )
1228
+
1229
+ text_outputs = self.text_model(
1230
+ input_ids=input_ids,
1231
+ attention_mask=attention_mask,
1232
+ position_ids=position_ids,
1233
+ output_attentions=output_attentions,
1234
+ output_hidden_states=output_hidden_states,
1235
+ return_dict=return_dict,
1236
+ )
1237
+
1238
+ image_embeds = vision_outputs[1]
1239
+ image_embeds = self.visual_projection(image_embeds)
1240
+
1241
+ text_embeds = text_outputs[1]
1242
+ text_embeds = self.text_projection(text_embeds)
1243
+
1244
+ # normalized features
1245
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
1246
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1247
+
1248
+ # cosine similarity as logits
1249
+ logit_scale = self.logit_scale.exp()
1250
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
1251
+ logits_per_image = logits_per_text.t()
1252
+
1253
+ loss = None
1254
+ if return_loss:
1255
+ loss = clip_loss(logits_per_text)
1256
+
1257
+ if not return_dict:
1258
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
1259
+ return ((loss,) + output) if loss is not None else output
1260
+
1261
+ return EvaCLIPOutput(
1262
+ loss=loss,
1263
+ logits_per_image=logits_per_image,
1264
+ logits_per_text=logits_per_text,
1265
+ text_embeds=text_embeds,
1266
+ image_embeds=image_embeds,
1267
+ text_model_output=text_outputs,
1268
+ vision_model_output=vision_outputs,
1269
+ )
1270
+
1271
+
1272
+ @add_start_docstrings(
1273
+ """
1274
+ EvaCLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
1275
+ """,
1276
+ EvaCLIP_START_DOCSTRING,
1277
+ )
1278
+ class EvaCLIPTextModelWithProjection(EvaCLIPPreTrainedModel):
1279
+ config_class = EvaCLIPTextConfig
1280
+
1281
+ _no_split_modules = ["EvaCLIPEncoderLayer"]
1282
+
1283
+ def __init__(self, config: EvaCLIPTextConfig):
1284
+ super().__init__(config)
1285
+
1286
+ self.text_model = EvaCLIPTextTransformer(config)
1287
+
1288
+ self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
1289
+
1290
+ # Initialize weights and apply final processing
1291
+ self.posxt_init()
1292
+
1293
+ def get_input_embeddings(self) -> nn.Module:
1294
+ return self.text_model.embeddings.token_embedding
1295
+
1296
+ def set_input_embeddings(self, value):
1297
+ self.text_model.embeddings.token_embedding = value
1298
+
1299
+ @add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING)
1300
+ @replace_return_docstrings(output_type=EvaCLIPTextModelOutput, config_class=EvaCLIPTextConfig)
1301
+ def forward(
1302
+ self,
1303
+ input_ids: Optional[torch.Tensor] = None,
1304
+ attention_mask: Optional[torch.Tensor] = None,
1305
+ position_ids: Optional[torch.Tensor] = None,
1306
+ output_attentions: Optional[bool] = None,
1307
+ output_hidden_states: Optional[bool] = None,
1308
+ return_dict: Optional[bool] = None,
1309
+ ) -> Union[Tuple, EvaCLIPTextModelOutput]:
1310
+ r"""
1311
+ Returns:
1312
+
1313
+ Examples:
1314
+
1315
+ ```python
1316
+ >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
1317
+
1318
+ >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
1319
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1320
+
1321
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
1322
+
1323
+ >>> outputs = model(**inputs)
1324
+ >>> text_embeds = outputs.text_embeds
1325
+ ```"""
1326
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1327
+
1328
+ text_outputs = self.text_model(
1329
+ input_ids=input_ids,
1330
+ attention_mask=attention_mask,
1331
+ position_ids=position_ids,
1332
+ output_attentions=output_attentions,
1333
+ output_hidden_states=output_hidden_states,
1334
+ return_dict=return_dict,
1335
+ )
1336
+
1337
+ pooled_output = text_outputs[1]
1338
+
1339
+ text_embeds = self.text_projection(pooled_output)
1340
+
1341
+ if not return_dict:
1342
+ outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
1343
+ return tuple(output for output in outputs if output is not None)
1344
+
1345
+ return EvaCLIPTextModelOutput(
1346
+ text_embeds=text_embeds,
1347
+ last_hidden_state=text_outputs.last_hidden_state,
1348
+ hidden_states=text_outputs.hidden_states,
1349
+ attentions=text_outputs.attentions,
1350
+ )
1351
+
1352
+
1353
+ @add_start_docstrings(
1354
+ """
1355
+ EvaCLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
1356
+ """,
1357
+ EvaCLIP_START_DOCSTRING,
1358
+ )
1359
+ class EvaCLIPVisionModelWithProjection(EvaCLIPPreTrainedModel):
1360
+ config_class = EvaCLIPVisionConfig
1361
+ main_input_name = "pixel_values"
1362
+
1363
+ def __init__(self, config: EvaCLIPVisionConfig):
1364
+ super().__init__(config)
1365
+
1366
+ self.vision_model = EvaCLIPVisionTransformer(config)
1367
+
1368
+ self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
1369
+
1370
+ # Initialize weights and apply final processing
1371
+ self.post_init()
1372
+
1373
+ def get_input_embeddings(self) -> nn.Module:
1374
+ return self.vision_model.embeddings.patch_embedding
1375
+
1376
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
1377
+ @replace_return_docstrings(output_type=EvaCLIPVisionModelOutput, config_class=EvaCLIPVisionConfig)
1378
+ def forward(
1379
+ self,
1380
+ pixel_values: Optional[torch.FloatTensor] = None,
1381
+ output_attentions: Optional[bool] = None,
1382
+ output_hidden_states: Optional[bool] = None,
1383
+ return_dict: Optional[bool] = None,
1384
+ ) -> Union[Tuple, EvaCLIPVisionModelOutput]:
1385
+ r"""
1386
+ Returns:
1387
+
1388
+ Examples:
1389
+
1390
+ ```python
1391
+ >>> from PIL import Image
1392
+ >>> import requests
1393
+ >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
1394
+
1395
+ >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
1396
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1397
+
1398
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1399
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1400
+
1401
+ >>> inputs = processor(images=image, return_tensors="pt")
1402
+
1403
+ >>> outputs = model(**inputs)
1404
+ >>> image_embeds = outputs.image_embeds
1405
+ ```"""
1406
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1407
+
1408
+ vision_outputs = self.vision_model(
1409
+ pixel_values=pixel_values,
1410
+ output_attentions=output_attentions,
1411
+ output_hidden_states=output_hidden_states,
1412
+ return_dict=return_dict,
1413
+ )
1414
+
1415
+ pooled_output = vision_outputs[1] # pooled_output
1416
+
1417
+ image_embeds = self.visual_projection(pooled_output)
1418
+
1419
+ if not return_dict:
1420
+ outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
1421
+ return tuple(output for output in outputs if output is not None)
1422
+
1423
+ return EvaCLIPVisionModelOutput(
1424
+ image_embeds=image_embeds,
1425
+ last_hidden_state=vision_outputs.last_hidden_state,
1426
+ hidden_states=vision_outputs.hidden_states,
1427
+ attentions=vision_outputs.attentions,
1428
+ )
EVA02-CLIP-bigE-14-plus_s9B/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
EVA02-CLIP-bigE-14-plus_s9B/tokenizer_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "__type": "AddedToken",
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "errors": "replace",
19
+ "model_max_length": 1000000000000000019884624838656,
20
+ "pad_token": "<|endoftext|>",
21
+ "special_tokens_map_file": null,
22
+ "tokenizer_class": "CLIPTokenizer",
23
+ "unk_token": {
24
+ "__type": "AddedToken",
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": true,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
EVA02-CLIP-bigE-14-plus_s9B/vocab.json ADDED
The diff for this file is too large to render. See raw diff