Quacktab commited on
Commit
ab134d3
1 Parent(s): 0c9915c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.27 +/- 0.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3beb5401579e90bd4f9a86b25b884298df1db73d8be31372e7373a82d62ea052
3
+ size 106914
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b37aacc6680>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7b37aacbe580>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 100000,
23
+ "_total_timesteps": 100000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1696417868939927384,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2ysMPqWsPryDbM8+rYGEvrmne74rp7Q+2ysMPqWsPryDbM8+rpUdvdc0Uz77WJ49lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh6oiPwQjlD5hEzu+qGa6v+Rjhr47Jde91dduP+7E9r6GwkG/VWjUPu8JID+2S7+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADbKww+paw+vINszz5skXk+IJRQurdpXT6tgYS+uad7viuntD7Yb4e/L0vhv8mbLj/bKww+paw+vINszz5skXk+IJRQurdpXT6ulR291zRTPvtYnj3vz/W/QijhP2sOx7+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.13688605 -0.01163784 0.40512475]\n [-0.25880185 -0.245757 0.3528379 ]\n [ 0.13688605 -0.01163784 0.40512475]\n [-0.03847282 0.20625626 0.07731815]]",
34
+ "desired_goal": "[[ 0.63541454 0.28932965 -0.18269111]\n [-1.4562578 -0.26248085 -0.10505148]\n [ 0.93298084 -0.4819712 -0.75687444]\n [ 0.4148585 0.6251516 -1.494498 ]]",
35
+ "observation": "[[ 1.3688605e-01 -1.1637841e-02 4.0512475e-01 2.4371880e-01\n -7.9566427e-04 2.1622358e-01]\n [-2.5880185e-01 -2.4575700e-01 3.5283789e-01 -1.0581007e+00\n -1.7601069e+00 6.8206459e-01]\n [ 1.3688605e-01 -1.1637841e-02 4.0512475e-01 2.4371880e-01\n -7.9566427e-04 2.1622358e-01]\n [-3.8472824e-02 2.0625626e-01 7.7318154e-02 -1.9204081e+00\n 1.7590411e+00 -1.5551275e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmJMSvrFTEz5iVPA8pGtMPXd3F76xa7I8V9WIPM4jhTx4tiA+bkpVvdRHmL2Sh5Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.14314115 0.14387394 0.02933711]\n [ 0.04990734 -0.14791666 0.02177987]\n [ 0.01670329 0.01625242 0.15694606]\n [-0.05207293 -0.07435575 0.29009682]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv936k690zTGMAWyUSweMAXSUR0BzVSBBiTdMdX2UKGgGR7/KBLf1pTMraAdLA2gIR0BzWEOmR/3GdX2UKGgGR7/N45cTrVvuaAdLA2gIR0BzUppqREF4dX2UKGgGR7/gZ4fOlfqpaAdLBGgIR0BzVcCq6vq1dX2UKGgGR7/FS75Ec81XaAdLA2gIR0BzWLBBRhttdX2UKGgGR7/kCQT238XOaAdLCGgIR0BzUHK3d9DydX2UKGgGR7/OAWBSUC7saAdLA2gIR0BzVkrqdH2AdX2UKGgGR7/dZKnNxEORaAdLBWgIR0BzU2nhsImgdX2UKGgGR7/Wollbu+h5aAdLA2gIR0BzWTkPtlZpdX2UKGgGR7/FGlQ/HHWCaAdLAmgIR0BzVpdUsFt9dX2UKGgGR7/FgZ0jkdWAaAdLA2gIR0BzU92gWac7dX2UKGgGR7/XQTmGM4tIaAdLBGgIR0BzUSBtk4FSdX2UKGgGR7/anIyTINmUaAdLBGgIR0BzWeSfUWl/dX2UKGgGR7/S5i3G4qgAaAdLA2gIR0BzVx8jRlYmdX2UKGgGR7/EqgAZKnNxaAdLAmgIR0BzVD3sXzlLdX2UKGgGR7/A++M6zVtoaAdLAmgIR0BzWioaUA1fdX2UKGgGR7+86tDD0lJIaAdLAmgIR0BzV2L4vexfdX2UKGgGR7/P3GGVRk3CaAdLBGgIR0BzUcKPXCj2dX2UKGgGR7/SKzAvcrRTaAdLA2gIR0BzVKTEBKcvdX2UKGgGR7+/ADaGpMpPaAdLAmgIR0BzWnI0ZWJadX2UKGgGR7+1b0OEug6EaAdLAmgIR0BzUghTwUg0dX2UKGgGR7/QgA6uGKyfaAdLA2gIR0BzV96Z6UqydX2UKGgGR7+7ncL0Bfa6aAdLAmgIR0BzUl0MgEEDdX2UKGgGR7/Sxb0OEug6aAdLA2gIR0BzWukbgjyGdX2UKGgGR7/DZ/0/W1+iaAdLAmgIR0BzWCJbdJrddX2UKGgGR7/cSq2jO9nLaAdLBGgIR0BzVUEGJN0vdX2UKGgGR7/RdAPd2xIKaAdLA2gIR0BzUsZuQ6p6dX2UKGgGR7/S8neBQN1AaAdLA2gIR0BzW2UbDMvAdX2UKGgGR7/RkKNQ0oBraAdLA2gIR0BzWJ6lchTwdX2UKGgGR7/QiWE9Mbm2aAdLA2gIR0BzVb7m+0w8dX2UKGgGR7+4QFs54nndaAdLAmgIR0BzVf+FUQ05dX2UKGgGR7/QovBacI7eaAdLA2gIR0BzW87dSEUTdX2UKGgGR7/Sn13+uNgjaAdLBGgIR0BzWS8IzFdcdX2UKGgGR7/Y9MsYl6Z6aAdLBmgIR0BzU8CFK02MdX2UKGgGR7/NcDbJwKjSaAdLA2gIR0BzXE3zcynDdX2UKGgGR7/b/PgNwzciaAdLBGgIR0BzVqSB9TgmdX2UKGgGR7/UbPyCnP3SaAdLA2gIR0BzWalSCOFQdX2UKGgGR7/CerdWQwK0aAdLAmgIR0BzVAd/8VHndX2UKGgGR7+5T6zmfXf7aAdLAmgIR0BzVugPEsJ6dX2UKGgGR7+h84PwuuifaAdLAWgIR0BzVCjWTX8PdX2UKGgGR7/KObRWtEG8aAdLA2gIR0BzXLVSXMQmdX2UKGgGR7/Xd8zAN5MUaAdLBGgIR0BzWkLCvX9SdX2UKGgGR7/K8e0Xxe9jaAdLA2gIR0BzV2Ezwc5sdX2UKGgGR7/Mw5/9YOlPaAdLA2gIR0BzWqiAUcn3dX2UKGgGR7/MBhhH9WIXaAdLA2gIR0BzV8fNiYsvdX2UKGgGR7/ZU9ZA6dUbaAdLBmgIR0BzVQn4O+ZgdX2UKGgGR7/hJZwGW2PUaAdLBmgIR0BzXa0TlDF7dX2UKGgGR7+hfWtlqagFaAdLAWgIR0BzWuYb83uNdX2UKGgGR7+8AbQ1JlJ6aAdLAmgIR0BzXfSeAd4ndX2UKGgGR7/BcgyM1jy4aAdLAmgIR0BzWy4+bExZdX2UKGgGR7/PXRPXTVlPaAdLA2gIR0BzWE+pwS8KdX2UKGgGR7/KZb6guh9LaAdLA2gIR0BzVZIlMRHxdX2UKGgGR7/Cso2GZeAvaAdLAmgIR0BzW3n3cpLFdX2UKGgGR7/SgFX7tRekaAdLA2gIR0BzWM1sLv1EdX2UKGgGR7/GEbo8p1A8aAdLA2gIR0BzVg6bONYKdX2UKGgGR7/LP+GXXyy2aAdLA2gIR0BzW/Q8fV7QdX2UKGgGR7/M384xUNrkaAdLA2gIR0BzWTL/0dzXdX2UKGgGR7/foiLVFx4qaAdLB2gIR0BzXwNG3F1kdX2UKGgGR7/QlJHy3CsPaAdLBGgIR0BzVprBTGYKdX2UKGgGR7/E33pOerdWaAdLAmgIR0BzX14Oc2BKdX2UKGgGR7/eAhje9Ba+aAdLBGgIR0BzXJoIv8IidX2UKGgGR7/Gs+V1Oj7AaAdLA2gIR0BzWbrGBFuvdX2UKGgGR7/Ta9bor4FiaAdLA2gIR0BzVxxaPjn3dX2UKGgGR7/ABEKE384xaAdLAmgIR0BzXOF/QSi/dX2UKGgGR7+9HRTjvNNbaAdLAmgIR0BzWgBT4tYkdX2UKGgGR7/LzGxUvPC3aAdLA2gIR0BzX85tFa0QdX2UKGgGR7/P1GLDQ7cPaAdLA2gIR0BzV5rM1TBJdX2UKGgGR7+fWpZOi35OaAdLAWgIR0BzV71ZkkKNdX2UKGgGR7/XV09yLhrFaAdLBGgIR0BzXYG0NSZSdX2UKGgGR7/SAO8TSLIgaAdLBGgIR0BzWqEh7mdRdX2UKGgGR7/UH/cWTHKfaAdLA2gIR0BzWCLIgeRxdX2UKGgGR7/dwRoRIz3zaAdLBmgIR0BzYMDMeOn3dX2UKGgGR7/Ft7a7EpAlaAdLA2gIR0BzXfnied08dX2UKGgGR7/H7el9BrvcaAdLA2gIR0BzWxjQRf4RdX2UKGgGR7+9jtoi9qUNaAdLAmgIR0BzW2UhV2iddX2UKGgGR7/LiiItUXHjaAdLA2gIR0BzWKYc/+sHdX2UKGgGR7/SN2TxG2CvaAdLA2gIR0BzXmnBLwnZdX2UKGgGR7/cQ9ic5Ke1aAdLBGgIR0BzYVOdoWYXdX2UKGgGR7/OjSofjjrBaAdLA2gIR0BzW9un/DLsdX2UKGgGR7/RLMs6JZW8aAdLA2gIR0BzWRwzch1UdX2UKGgGR7/Sl+EytV7yaAdLA2gIR0BzXuJzkp7UdX2UKGgGR7+9JkGzKLbYaAdLAmgIR0BzXCXOW0JGdX2UKGgGR7/Vf5k9U0emaAdLBGgIR0BzYfM+u/1ydX2UKGgGR7/PS9du5z5oaAdLA2gIR0BzWYmOU+s6dX2UKGgGR7/bOLR8c+7laAdLBGgIR0BzX4DKYAsDdX2UKGgGR7+6tCAtnPE9aAdLAmgIR0BzWd/gBLf2dX2UKGgGR7/Vi4rjHXEqaAdLBGgIR0BzXME5hjOLdX2UKGgGR7/RYJ3PiT+vaAdLA2gIR0BzX+SwGGEgdX2UKGgGR7+8aIeo1k1/aAdLAmgIR0BzXQNWluWKdX2UKGgGR7/Tb5dnkDISaAdLA2gIR0BzWkUcn3L3dX2UKGgGR7/adEsrd30PaAdLBmgIR0BzYtJZntfHdX2UKGgGR79+HBUJfICEaAdLAWgIR0BzXSjGkvbodX2UKGgGR7/IPPszEaVEaAdLA2gIR0BzWre0ojOcdX2UKGgGR7/OVObiIcioaAdLA2gIR0BzY0L5RCQcdX2UKGgGR7/Wmplz2exwaAdLBGgIR0BzYHt6X0GvdX2UKGgGR7/RodMj/uLKaAdLA2gIR0BzXZmGucMFdX2UKGgGR7+ljslb/wRXaAdLAWgIR0BzYJsCT2WZdX2UKGgGR7/D3qRlpXZHaAdLAmgIR0BzWvjlxOtXdX2UKGgGR7+82eg+QlruaAdLAmgIR0BzY4YHgP3BdX2UKGgGR7+z4CZF5OafaAdLAmgIR0BzXd0tAcDKdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 5000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 0.99,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce435786cec2f71d3aa234f904d29d35d052a6297ac4373047b2544cd07fc11b
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7676be23d6a13739f4490a8c5721c933e3875e332d7edd7ad0c5b6bc7a663ca
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b37aacc6680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b37aacbe580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696417868939927384, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2ysMPqWsPryDbM8+rYGEvrmne74rp7Q+2ysMPqWsPryDbM8+rpUdvdc0Uz77WJ49lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh6oiPwQjlD5hEzu+qGa6v+Rjhr47Jde91dduP+7E9r6GwkG/VWjUPu8JID+2S7+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADbKww+paw+vINszz5skXk+IJRQurdpXT6tgYS+uad7viuntD7Yb4e/L0vhv8mbLj/bKww+paw+vINszz5skXk+IJRQurdpXT6ulR291zRTPvtYnj3vz/W/QijhP2sOx7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.13688605 -0.01163784 0.40512475]\n [-0.25880185 -0.245757 0.3528379 ]\n [ 0.13688605 -0.01163784 0.40512475]\n [-0.03847282 0.20625626 0.07731815]]", "desired_goal": "[[ 0.63541454 0.28932965 -0.18269111]\n [-1.4562578 -0.26248085 -0.10505148]\n [ 0.93298084 -0.4819712 -0.75687444]\n [ 0.4148585 0.6251516 -1.494498 ]]", "observation": "[[ 1.3688605e-01 -1.1637841e-02 4.0512475e-01 2.4371880e-01\n -7.9566427e-04 2.1622358e-01]\n [-2.5880185e-01 -2.4575700e-01 3.5283789e-01 -1.0581007e+00\n -1.7601069e+00 6.8206459e-01]\n [ 1.3688605e-01 -1.1637841e-02 4.0512475e-01 2.4371880e-01\n -7.9566427e-04 2.1622358e-01]\n [-3.8472824e-02 2.0625626e-01 7.7318154e-02 -1.9204081e+00\n 1.7590411e+00 -1.5551275e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmJMSvrFTEz5iVPA8pGtMPXd3F76xa7I8V9WIPM4jhTx4tiA+bkpVvdRHmL2Sh5Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14314115 0.14387394 0.02933711]\n [ 0.04990734 -0.14791666 0.02177987]\n [ 0.01670329 0.01625242 0.15694606]\n [-0.05207293 -0.07435575 0.29009682]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv936k690zTGMAWyUSweMAXSUR0BzVSBBiTdMdX2UKGgGR7/KBLf1pTMraAdLA2gIR0BzWEOmR/3GdX2UKGgGR7/N45cTrVvuaAdLA2gIR0BzUppqREF4dX2UKGgGR7/gZ4fOlfqpaAdLBGgIR0BzVcCq6vq1dX2UKGgGR7/FS75Ec81XaAdLA2gIR0BzWLBBRhttdX2UKGgGR7/kCQT238XOaAdLCGgIR0BzUHK3d9DydX2UKGgGR7/OAWBSUC7saAdLA2gIR0BzVkrqdH2AdX2UKGgGR7/dZKnNxEORaAdLBWgIR0BzU2nhsImgdX2UKGgGR7/Wollbu+h5aAdLA2gIR0BzWTkPtlZpdX2UKGgGR7/FGlQ/HHWCaAdLAmgIR0BzVpdUsFt9dX2UKGgGR7/FgZ0jkdWAaAdLA2gIR0BzU92gWac7dX2UKGgGR7/XQTmGM4tIaAdLBGgIR0BzUSBtk4FSdX2UKGgGR7/anIyTINmUaAdLBGgIR0BzWeSfUWl/dX2UKGgGR7/S5i3G4qgAaAdLA2gIR0BzVx8jRlYmdX2UKGgGR7/EqgAZKnNxaAdLAmgIR0BzVD3sXzlLdX2UKGgGR7/A++M6zVtoaAdLAmgIR0BzWioaUA1fdX2UKGgGR7+86tDD0lJIaAdLAmgIR0BzV2L4vexfdX2UKGgGR7/P3GGVRk3CaAdLBGgIR0BzUcKPXCj2dX2UKGgGR7/SKzAvcrRTaAdLA2gIR0BzVKTEBKcvdX2UKGgGR7+/ADaGpMpPaAdLAmgIR0BzWnI0ZWJadX2UKGgGR7+1b0OEug6EaAdLAmgIR0BzUghTwUg0dX2UKGgGR7/QgA6uGKyfaAdLA2gIR0BzV96Z6UqydX2UKGgGR7+7ncL0Bfa6aAdLAmgIR0BzUl0MgEEDdX2UKGgGR7/Sxb0OEug6aAdLA2gIR0BzWukbgjyGdX2UKGgGR7/DZ/0/W1+iaAdLAmgIR0BzWCJbdJrddX2UKGgGR7/cSq2jO9nLaAdLBGgIR0BzVUEGJN0vdX2UKGgGR7/RdAPd2xIKaAdLA2gIR0BzUsZuQ6p6dX2UKGgGR7/S8neBQN1AaAdLA2gIR0BzW2UbDMvAdX2UKGgGR7/RkKNQ0oBraAdLA2gIR0BzWJ6lchTwdX2UKGgGR7/QiWE9Mbm2aAdLA2gIR0BzVb7m+0w8dX2UKGgGR7+4QFs54nndaAdLAmgIR0BzVf+FUQ05dX2UKGgGR7/QovBacI7eaAdLA2gIR0BzW87dSEUTdX2UKGgGR7/Sn13+uNgjaAdLBGgIR0BzWS8IzFdcdX2UKGgGR7/Y9MsYl6Z6aAdLBmgIR0BzU8CFK02MdX2UKGgGR7/NcDbJwKjSaAdLA2gIR0BzXE3zcynDdX2UKGgGR7/b/PgNwzciaAdLBGgIR0BzVqSB9TgmdX2UKGgGR7/UbPyCnP3SaAdLA2gIR0BzWalSCOFQdX2UKGgGR7/CerdWQwK0aAdLAmgIR0BzVAd/8VHndX2UKGgGR7+5T6zmfXf7aAdLAmgIR0BzVugPEsJ6dX2UKGgGR7+h84PwuuifaAdLAWgIR0BzVCjWTX8PdX2UKGgGR7/KObRWtEG8aAdLA2gIR0BzXLVSXMQmdX2UKGgGR7/Xd8zAN5MUaAdLBGgIR0BzWkLCvX9SdX2UKGgGR7/K8e0Xxe9jaAdLA2gIR0BzV2Ezwc5sdX2UKGgGR7/Mw5/9YOlPaAdLA2gIR0BzWqiAUcn3dX2UKGgGR7/MBhhH9WIXaAdLA2gIR0BzV8fNiYsvdX2UKGgGR7/ZU9ZA6dUbaAdLBmgIR0BzVQn4O+ZgdX2UKGgGR7/hJZwGW2PUaAdLBmgIR0BzXa0TlDF7dX2UKGgGR7+hfWtlqagFaAdLAWgIR0BzWuYb83uNdX2UKGgGR7+8AbQ1JlJ6aAdLAmgIR0BzXfSeAd4ndX2UKGgGR7/BcgyM1jy4aAdLAmgIR0BzWy4+bExZdX2UKGgGR7/PXRPXTVlPaAdLA2gIR0BzWE+pwS8KdX2UKGgGR7/KZb6guh9LaAdLA2gIR0BzVZIlMRHxdX2UKGgGR7/Cso2GZeAvaAdLAmgIR0BzW3n3cpLFdX2UKGgGR7/SgFX7tRekaAdLA2gIR0BzWM1sLv1EdX2UKGgGR7/GEbo8p1A8aAdLA2gIR0BzVg6bONYKdX2UKGgGR7/LP+GXXyy2aAdLA2gIR0BzW/Q8fV7QdX2UKGgGR7/M384xUNrkaAdLA2gIR0BzWTL/0dzXdX2UKGgGR7/foiLVFx4qaAdLB2gIR0BzXwNG3F1kdX2UKGgGR7/QlJHy3CsPaAdLBGgIR0BzVprBTGYKdX2UKGgGR7/E33pOerdWaAdLAmgIR0BzX14Oc2BKdX2UKGgGR7/eAhje9Ba+aAdLBGgIR0BzXJoIv8IidX2UKGgGR7/Gs+V1Oj7AaAdLA2gIR0BzWbrGBFuvdX2UKGgGR7/Ta9bor4FiaAdLA2gIR0BzVxxaPjn3dX2UKGgGR7/ABEKE384xaAdLAmgIR0BzXOF/QSi/dX2UKGgGR7+9HRTjvNNbaAdLAmgIR0BzWgBT4tYkdX2UKGgGR7/LzGxUvPC3aAdLA2gIR0BzX85tFa0QdX2UKGgGR7/P1GLDQ7cPaAdLA2gIR0BzV5rM1TBJdX2UKGgGR7+fWpZOi35OaAdLAWgIR0BzV71ZkkKNdX2UKGgGR7/XV09yLhrFaAdLBGgIR0BzXYG0NSZSdX2UKGgGR7/SAO8TSLIgaAdLBGgIR0BzWqEh7mdRdX2UKGgGR7/UH/cWTHKfaAdLA2gIR0BzWCLIgeRxdX2UKGgGR7/dwRoRIz3zaAdLBmgIR0BzYMDMeOn3dX2UKGgGR7/Ft7a7EpAlaAdLA2gIR0BzXfnied08dX2UKGgGR7/H7el9BrvcaAdLA2gIR0BzWxjQRf4RdX2UKGgGR7+9jtoi9qUNaAdLAmgIR0BzW2UhV2iddX2UKGgGR7/LiiItUXHjaAdLA2gIR0BzWKYc/+sHdX2UKGgGR7/SN2TxG2CvaAdLA2gIR0BzXmnBLwnZdX2UKGgGR7/cQ9ic5Ke1aAdLBGgIR0BzYVOdoWYXdX2UKGgGR7/OjSofjjrBaAdLA2gIR0BzW9un/DLsdX2UKGgGR7/RLMs6JZW8aAdLA2gIR0BzWRwzch1UdX2UKGgGR7/Sl+EytV7yaAdLA2gIR0BzXuJzkp7UdX2UKGgGR7+9JkGzKLbYaAdLAmgIR0BzXCXOW0JGdX2UKGgGR7/Vf5k9U0emaAdLBGgIR0BzYfM+u/1ydX2UKGgGR7/PS9du5z5oaAdLA2gIR0BzWYmOU+s6dX2UKGgGR7/bOLR8c+7laAdLBGgIR0BzX4DKYAsDdX2UKGgGR7+6tCAtnPE9aAdLAmgIR0BzWd/gBLf2dX2UKGgGR7/Vi4rjHXEqaAdLBGgIR0BzXME5hjOLdX2UKGgGR7/RYJ3PiT+vaAdLA2gIR0BzX+SwGGEgdX2UKGgGR7+8aIeo1k1/aAdLAmgIR0BzXQNWluWKdX2UKGgGR7/Tb5dnkDISaAdLA2gIR0BzWkUcn3L3dX2UKGgGR7/adEsrd30PaAdLBmgIR0BzYtJZntfHdX2UKGgGR79+HBUJfICEaAdLAWgIR0BzXSjGkvbodX2UKGgGR7/IPPszEaVEaAdLA2gIR0BzWre0ojOcdX2UKGgGR7/OVObiIcioaAdLA2gIR0BzY0L5RCQcdX2UKGgGR7/Wmplz2exwaAdLBGgIR0BzYHt6X0GvdX2UKGgGR7/RodMj/uLKaAdLA2gIR0BzXZmGucMFdX2UKGgGR7+ljslb/wRXaAdLAWgIR0BzYJsCT2WZdX2UKGgGR7/D3qRlpXZHaAdLAmgIR0BzWvjlxOtXdX2UKGgGR7+82eg+QlruaAdLAmgIR0BzY4YHgP3BdX2UKGgGR7+z4CZF5OafaAdLAmgIR0BzXd0tAcDKdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (722 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.265185191296041, "std_reward": 0.13942667701292866, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-04T11:16:51.359168"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db2b250e802d598d82d8e263dcc0b9cf8b7f7fb2d98ce308125d69775100c280
3
+ size 2623