|
import os |
|
import math |
|
import time |
|
import json |
|
import inspect |
|
from dataclasses import dataclass |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from safetensors.torch import save_model |
|
from transformers import PreTrainedModel, PretrainedConfig, AutoConfig, AutoModelForCausalLM |
|
from configuration_gpt import GPTConfig |
|
from huggingface_hub import HfApi |
|
|
|
import os |
|
import json |
|
import torch |
|
from safetensors.torch import save_model |
|
|
|
|
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
y = self.c_proj(y) |
|
return y |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) |
|
self.gelu = nn.GELU(approximate='tanh') |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = self.gelu(x) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class GPT(PreTrainedModel): |
|
config_class = GPTConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.transformer = nn.ModuleDict(dict( |
|
wte=nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe=nn.Embedding(config.block_size, config.n_embd), |
|
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f=nn.LayerNorm(config.n_embd), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.transformer.wte.weight = self.lm_head.weight |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
std = 0.02 |
|
if hasattr(module, 'NANOGPT_SCALE_INIT'): |
|
std *= (2 * self.config.n_layer) ** -0.5 |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
B, T = idx.size() |
|
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" |
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) |
|
pos_emb = self.transformer.wpe(pos) |
|
tok_emb = self.transformer.wte(idx) |
|
x = tok_emb + pos_emb |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
return logits, loss |
|
|
|
def save_pretrained(self, save_directory): |
|
super().save_pretrained(save_directory) |
|
torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin")) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
return super().from_pretrained(*args, **kwargs) |
|
def push_to_hub(self, repo_id, private=False, commit_message="Push model to hub"): |
|
|
|
self.save_pretrained(repo_id) |
|
|
|
|
|
api = HfApi() |
|
api.upload_folder( |
|
folder_path=repo_id, |
|
repo_id=repo_id, |
|
repo_type="model", |
|
private=private, |
|
commit_message=commit_message |
|
) |
|
|
|
|
|
AutoConfig.register("custom_gpt", GPTConfig) |
|
AutoModelForCausalLM.register(GPTConfig, GPT) |
|
config = GPTConfig() |
|
model = GPT(config) |
|
|