Protao commited on
Commit
a59fcbc
1 Parent(s): 1d0cb2c

run the official code for MountainCar-v0 3000000 step train

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCar-v0
16
+ type: MountainCar-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -138.00 +/- 31.51
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **MountainCar-v0**
25
+ This is a trained model of a **PPO** agent playing **MountainCar-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf3a33629e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf3a3362a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf3a3362b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf3a3362b90>", "_build": "<function ActorCriticPolicy._build at 0x7bf3a3362c20>", "forward": "<function ActorCriticPolicy.forward at 0x7bf3a3362cb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf3a3362d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf3a3362dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bf3a3362e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf3a3362ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf3a3362f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf3a3363010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bf3a3368300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701612626091294111, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAABFoQb9w6hE9+dG4vozLk7osc+6+SZ5RPM5cA7/0t9m6zT5kvk11hjwt/wK/R6AJPXCL4L6N+6M7ArHzvq8UhTrpgiu/Zd0+OwFVlr/r7DQ8Wm05v6R6DTpzXsm+BeT8POlWB78U0Hy9aranvjQC0rz4pYK+KBywPJv6ar50Ryg7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CXFg3tKIzndX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXFh5yU9pzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFiQLNOdodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFnPFNtZWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFqqWTot+dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXFvAD7qIKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFwob4rSWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFxwob4rSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFz5kK/mDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2CJGe+VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2ODaoMsdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXF3Dc/MW5dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXF5gh8pkPdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXF5sTWXkYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKRrylN1ydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSIAwPAgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSfhMrVfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTVdHDrJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTp4rz5HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKYg6ltTDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKbrvb48EdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKfjcmBvrdX2UKGgGR8BowAAAAAAAaAdLxmgIR0CXKg1rZamodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKiIVuaWpdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKiaiKziTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKjxiG34LdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKlcMVk+YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKltw71ZldX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0CXKmmv4dp7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKo4/eLvUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKpF0PpY+dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXKqpS75EddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKsMOPNmldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKtGus90SdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXKtETxoZidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKyhhYvFndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKz1CPZIydX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0CXK5xmCiAUdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXK/SgXdj5dX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXLBRhMJyAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCXz19ORdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLEiGnGbTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHDLKV6edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHi4J/oadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLL3solUqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLMJ+DvmYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLOkAxSHedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLQn5BTn8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR0HhS9/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR2wFC9idX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXLTgoPTXrdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0CXLVtZFG5MdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXLcoBq9GrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLfW5paicdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXLj0l7dBTdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0CXLk3Ehq0udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLmkU9IPLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLnqT8pCsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLscEvCdjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLs62fChwdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLtyrgflqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxeYUnG9dX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLxN1hb4bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL2QQcxTLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL3dvbXYldX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXL5DW9US7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL66STyJ9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMBneBQN1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMESxqwhXdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0CXMEKE384xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMIlI3BHkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMJnaFmFrdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXMKk8RtgsdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMKbXpW3jdX2UKGgGR8BioAAAAAAAaAdLlWgIR0CXMMdiDujRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMMTvy9VWdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMOG5+YtydX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMOJEH+qBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMRIdlum8dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0CXMSf5ULlWdX2UKGgGR8BkQAAAAAAAaAdLomgIR0CXMV66asp5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMbJD3M6jdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0CXMdq814xDdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXMiTN+so2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMlSA6MisdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0CXMlceKbazdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMnM2FWXDdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CXMp6XBxgidX2UKGgGR8BmwAAAAAAAaAdLtmgIR0CXMrAeq7yydX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXMsRL9MsZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMsgSvkimdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwnUDuBudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMyiOearndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM1xjawljdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM3L9MsYmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM67NSqEOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXNAua4MF2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fd89d134a63825e5e2f8b4d2bb02fe85d07f5af4a070f58eb74b9d7e31a753a
3
+ size 136770
ppo-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-MountainCar-v0/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf3a33629e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf3a3362a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf3a3362b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf3a3362b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bf3a3362c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bf3a3362cb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf3a3362d40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf3a3362dd0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bf3a3362e60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf3a3362ef0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf3a3362f80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf3a3363010>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bf3a3368300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701612626091294111,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAABFoQb9w6hE9+dG4vozLk7osc+6+SZ5RPM5cA7/0t9m6zT5kvk11hjwt/wK/R6AJPXCL4L6N+6M7ArHzvq8UhTrpgiu/Zd0+OwFVlr/r7DQ8Wm05v6R6DTpzXsm+BeT8POlWB78U0Hy9aranvjQC0rz4pYK+KBywPJv6ar50Ryg7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0CXFg3tKIzndX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXFh5yU9pzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFiQLNOdodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFnPFNtZWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFqqWTot+dX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXFvAD7qIKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFwob4rSWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFxwob4rSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXFz5kK/mDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2CJGe+VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXF2ODaoMsdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXF3Dc/MW5dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXF5gh8pkPdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXF5sTWXkYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKRrylN1ydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSIAwPAgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKSfhMrVfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTVdHDrJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKTp4rz5HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKYg6ltTDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKbrvb48EdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKfjcmBvrdX2UKGgGR8BowAAAAAAAaAdLxmgIR0CXKg1rZamodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKiIVuaWpdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKiaiKziTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKjxiG34LdX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXKlcMVk+YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKltw71ZldX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0CXKmmv4dp7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKo4/eLvUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKpF0PpY+dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0CXKqpS75EddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKsMOPNmldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKtGus90SdX2UKGgGR8BooAAAAAAAaAdLxWgIR0CXKtETxoZidX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CXKyhhYvFndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXKz1CPZIydX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0CXK5xmCiAUdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXK/SgXdj5dX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXLBRhMJyAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCXz19ORdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLCuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLEiGnGbTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHDLKV6edX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLHi4J/oadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLL3solUqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLMJ+DvmYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLOkAxSHedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLQn5BTn8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR0HhS9/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLR2wFC9idX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXLTgoPTXrdX2UKGgGR8BnIAAAAAAAaAdLuWgIR0CXLVtZFG5MdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXLcoBq9GrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLfW5paicdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0CXLj0l7dBTdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0CXLk3Ehq0udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLmkU9IPLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLnqT8pCsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLscEvCdjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLs62fChwdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLtyrgflqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxeYUnG9dX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CXLxN1hb4bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXLxvoePq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL2QQcxTLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL3dvbXYldX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0CXL5DW9US7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXL66STyJ9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMBneBQN1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMESxqwhXdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0CXMEKE384xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMIlI3BHkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMJnaFmFrdX2UKGgGR8BogAAAAAAAaAdLxGgIR0CXMKk8RtgsdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMKbXpW3jdX2UKGgGR8BioAAAAAAAaAdLlWgIR0CXMMdiDujRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMMTvy9VWdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0CXMOG5+YtydX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMOJEH+qBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMRIdlum8dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0CXMSf5ULlWdX2UKGgGR8BkQAAAAAAAaAdLomgIR0CXMV66asp5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMbJD3M6jdX2UKGgGR8BoYAAAAAAAaAdLw2gIR0CXMdq814xDdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0CXMiTN+so2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMlSA6MisdX2UKGgGR8BnYAAAAAAAaAdLu2gIR0CXMlceKbazdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0CXMnM2FWXDdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CXMp6XBxgidX2UKGgGR8BmwAAAAAAAaAdLtmgIR0CXMrAeq7yydX2UKGgGR8BoIAAAAAAAaAdLwWgIR0CXMsRL9MsZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMsgSvkimdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwnUDuBudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMwguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXMyiOearndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM1xjawljdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM3L9MsYmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXM67NSqEOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0CXNAua4MF2dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 740,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True]",
60
+ "bounded_above": "[ True True]",
61
+ "_shape": [
62
+ 2
63
+ ],
64
+ "low": "[-1.2 -0.07]",
65
+ "high": "[0.6 0.07]",
66
+ "low_repr": "[-1.2 -0.07]",
67
+ "high_repr": "[0.6 0.07]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "3",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d75d91a4f3046f08e163332396072b65f6b9bd659fb8843677fbd8d652a93ac2
3
+ size 81706
ppo-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b476555b58c0f4d2d90372515fe48c7406ead135a72f2650a7856e7390a6ffdb
3
+ size 40434
ppo-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -138.0, "std_reward": 31.508728949292767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-03T14:26:15.881909"}