Promiseve commited on
Commit
af07993
·
1 Parent(s): d58c969

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 238.97 +/- 10.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5532039040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f55320390d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5532039160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f55320391f0>", "_build": "<function ActorCriticPolicy._build at 0x7f5532039280>", "forward": "<function ActorCriticPolicy.forward at 0x7f5532039310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f55320393a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5532039430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f55320394c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5532039550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f55320395e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5532039670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5532032b70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674984156789868684, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAByzbzX+3a7g+T+vL9CET2F/rA8YvfxvQAAgD8AAIA/Myl7vNIUtjw+IDm904I9vsj4oLydGRY9AAAAAAAAAACzulc9hR5fP7Mp2LyZpr2+mI1MPYo35jwAAAAAAAAAAODehb52BY4/9ez5vf+MY77qxHq+damLPQAAAAAAAAAA5g1aPVh/Jj/T70y9tGqfvkVf7zwxdhS9AAAAAAAAAABaF5S99gxpuo27TrgeCVSzZ2VGO+iMcjcAAIA/AACAP2ZmAbspBHO6AJPStV8sU7EnnAc7Fe34NAAAgD8AAIA/zSR0vHY3KLxer7u8UKYiPSphiz3/JQS+AACAPwAAgD9tnUc+F7EyP53vkry+A5W+BrLsPZK/l70AAAAAAAAAALMGFb4ctAS8C2/ovGlsQbu3wWg9gfEhPAAAgD8AAIA/mqfZPWYT3j4OJze9tHSGvg8icjz6Plm9AAAAAAAAAAAmqLy9ZmQJP380hz4bFY6+NCaGPahhjD0AAAAAAAAAALPs/T3XLGM+fiYAvoarZr7QQ7U8xhbgPAAAAAAAAAAAZmqkvDa7Xj8vUMc95yeevvbas7uLcjO9AAAAAAAAAAAa41w9oXOFPYvoUL001y2+YBD4u1ZZpTsAAAAAAAAAAPPZwz0SuyI+ylDQvR3uN76Sa9u7TtnIPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbEJaY9DpbUCUhpRSlIwBbJRNTwGMAXSUR0CU+CWRRuTBdX2UKGgGaAloD0MI9tIUAc5BZ0CUhpRSlGgVTegDaBZHQJT4ruKGcnV1fZQoaAZoCWgPQwiemssNBkdiQJSGlFKUaBVN6ANoFkdAlPrqfra/RHV9lChoBmgJaA9DCCycpPnjK2dAlIaUUpRoFU3oA2gWR0CVC7hL5AQhdX2UKGgGaAloD0MIZ195kB42ZUCUhpRSlGgVTegDaBZHQJUPtTAFgUl1fZQoaAZoCWgPQwgmj6flhytoQJSGlFKUaBVN6ANoFkdAlRnwIt16mnV9lChoBmgJaA9DCMozL4fd4m5AlIaUUpRoFU11A2gWR0CVGoFdcB2fdX2UKGgGaAloD0MIGHrE6DlyYkCUhpRSlGgVTegDaBZHQJUbyeOGTLZ1fZQoaAZoCWgPQwgrwHebt6RgQJSGlFKUaBVN6ANoFkdAlTeGqcVgyHV9lChoBmgJaA9DCAoS290Dm2BAlIaUUpRoFU3oA2gWR0CVN9ocrAgxdX2UKGgGaAloD0MIrROX41VfcUCUhpRSlGgVTcsCaBZHQJU4sOjIq9Z1fZQoaAZoCWgPQwhTJF8JJLZmQJSGlFKUaBVN6ANoFkdAlTv/oaDPGHV9lChoBmgJaA9DCE5FKowtUGdAlIaUUpRoFU3oA2gWR0CVPJKZDzAfdX2UKGgGaAloD0MIGRwlr86gZkCUhpRSlGgVTegDaBZHQJU96V2Rq491fZQoaAZoCWgPQwgoRwGiIB9xQJSGlFKUaBVNuwNoFkdAlT4r0voNeHV9lChoBmgJaA9DCPq2YKkuXGJAlIaUUpRoFU3oA2gWR0CVPxVB2OhkdX2UKGgGaAloD0MI0NA/wUWScECUhpRSlGgVTXEDaBZHQJVAWflIVdp1fZQoaAZoCWgPQwiob5nT5b9iQJSGlFKUaBVN6ANoFkdAlUXW38XN1XV9lChoBmgJaA9DCApoImx4hkVAlIaUUpRoFU0sAWgWR0CVR7xUNrj6dX2UKGgGaAloD0MIN6eSAaC4bECUhpRSlGgVTdADaBZHQJVHydwvQF91fZQoaAZoCWgPQwjRrdf0oIptQJSGlFKUaBVN7wFoFkdAlUixfWtlqnV9lChoBmgJaA9DCDY+k/2zFnBAlIaUUpRoFU0xAWgWR0CVS5wDNhVmdX2UKGgGaAloD0MIDtyBOuUycUCUhpRSlGgVTT4BaBZHQJVLuCaqjrR1fZQoaAZoCWgPQwg0ZhL1AvtuQJSGlFKUaBVNUAJoFkdAlUvf60pmVnV9lChoBmgJaA9DCGgibHj6q2VAlIaUUpRoFU3oA2gWR0CVVeTwlSjydX2UKGgGaAloD0MIQPZ698exT0CUhpRSlGgVS9loFkdAlVccDnvDxnV9lChoBmgJaA9DCGSyuP/IJ2NAlIaUUpRoFU3oA2gWR0CVWWg2Ifr9dX2UKGgGaAloD0MIMzUJ3lCmcECUhpRSlGgVTSQCaBZHQJVacVvddmh1fZQoaAZoCWgPQwiHqMKfYdptQJSGlFKUaBVN8QJoFkdAlV8tA1Nxl3V9lChoBmgJaA9DCOKPos5cqm5AlIaUUpRoFU3dAWgWR0CVX2g6U7jldX2UKGgGaAloD0MIpb4s7VTrYECUhpRSlGgVTegDaBZHQJVjEuDjBEd1fZQoaAZoCWgPQwhlprT+Vq5wQJSGlFKUaBVN+gFoFkdAlWQ7s8gZCXV9lChoBmgJaA9DCDJ2wkuwL3BAlIaUUpRoFU0WAmgWR0CVZLo9cKPXdX2UKGgGaAloD0MI8kOlETM1cUCUhpRSlGgVTQEDaBZHQJVoAfnwG4Z1fZQoaAZoCWgPQwgAVHHjlixuQJSGlFKUaBVNPgJoFkdAlWsvAXVLBnV9lChoBmgJaA9DCLCuCtRi9GNAlIaUUpRoFU3oA2gWR0CVfvXWvr4WdX2UKGgGaAloD0MIT64pkNk1cUCUhpRSlGgVTXkBaBZHQJWCEpQUHpt1fZQoaAZoCWgPQwhSmPc401hhQJSGlFKUaBVN6ANoFkdAlYZU6Lfk3nV9lChoBmgJaA9DCIzc09XdZHFAlIaUUpRoFU23A2gWR0CVhpJIUahpdX2UKGgGaAloD0MIa4DSUKODcECUhpRSlGgVTTsCaBZHQJWK4+3Ytg91fZQoaAZoCWgPQwjk3CbcK/8zwJSGlFKUaBVLoWgWR0CVjCCDEm6YdX2UKGgGaAloD0MI8mCL3f4ZcECUhpRSlGgVTS8DaBZHQJWMZ6zE74l1fZQoaAZoCWgPQwivfQG9cC5sQJSGlFKUaBVNdgJoFkdAlY1QQL/jsHV9lChoBmgJaA9DCBb3H5nO0HJAlIaUUpRoFU2QAWgWR0CVjn5gPVd5dX2UKGgGaAloD0MIYYpyaXxSbUCUhpRSlGgVTdoBaBZHQJWSVjlPrOZ1fZQoaAZoCWgPQwg+6q9XWLBkQJSGlFKUaBVN6ANoFkdAlZJYcWCVbHV9lChoBmgJaA9DCG8RGOvbT3FAlIaUUpRoFU0UA2gWR0CVmigntv4udX2UKGgGaAloD0MI4V6Zt2p+bkCUhpRSlGgVTe4BaBZHQJWbfUvwmVt1fZQoaAZoCWgPQwhCmNu93AVKQJSGlFKUaBVNDAFoFkdAlZyHrD63zHV9lChoBmgJaA9DCPfpeMyAcXBAlIaUUpRoFU3hAmgWR0CVoQtEXtSidX2UKGgGaAloD0MI6tDpebdba0CUhpRSlGgVTZkCaBZHQJWiZ3u/k/91fZQoaAZoCWgPQwiILxNFCCZxQJSGlFKUaBVN9QFoFkdAlaTqMzdk8XV9lChoBmgJaA9DCLlvtU7cy25AlIaUUpRoFU2JAmgWR0CVpmHRkVesdX2UKGgGaAloD0MIAtcVM4KacECUhpRSlGgVTdABaBZHQJWm+rWAf+11fZQoaAZoCWgPQwgbSu1FNHZmQJSGlFKUaBVN6ANoFkdAlax1N+LFXXV9lChoBmgJaA9DCD8BFCNLGGZAlIaUUpRoFU3oA2gWR0CVrLC+10DEdX2UKGgGaAloD0MILQjlfRy2bUCUhpRSlGgVTbwBaBZHQJWs0FSsKb91fZQoaAZoCWgPQwhyUMJMW0FvQJSGlFKUaBVNPQFoFkdAlazpxzaK13V9lChoBmgJaA9DCP58W7BUUW1AlIaUUpRoFU0lAmgWR0CVrrBY3eendX2UKGgGaAloD0MI7zob8s/rcECUhpRSlGgVTfUBaBZHQJWvbfHggox1fZQoaAZoCWgPQwh5B3jSwqBsQJSGlFKUaBVNZAFoFkdAlbBdkrf+CXV9lChoBmgJaA9DCDPd66S+m1RAlIaUUpRoFU0AAWgWR0CVs7LMs6JZdX2UKGgGaAloD0MIEFmkiTcPcECUhpRSlGgVTWQBaBZHQJW4PaqS5iF1fZQoaAZoCWgPQwgrajANw+lvQJSGlFKUaBVNHgNoFkdAlcxG+XZ5A3V9lChoBmgJaA9DCGa8rfTazBfAlIaUUpRoFUvxaBZHQJXM7vBrN4Z1fZQoaAZoCWgPQwgFGmzqvH5wQJSGlFKUaBVNvQFoFkdAlc40vkBCD3V9lChoBmgJaA9DCOviNhoAA3BAlIaUUpRoFU24A2gWR0CVzq8K5TZQdX2UKGgGaAloD0MI4lgXt1F8a0CUhpRSlGgVTXYCaBZHQJXPo2wV0tB1fZQoaAZoCWgPQwhl3qrr0AtwQJSGlFKUaBVNeQNoFkdAlc/R7RfF73V9lChoBmgJaA9DCO6TowDRMHBAlIaUUpRoFU1oAWgWR0CV0GbkOqecdX2UKGgGaAloD0MIebEwRE7Wb0CUhpRSlGgVTTgCaBZHQJXQ0R+SbH91fZQoaAZoCWgPQwg5twn3ygFxQJSGlFKUaBVNbQFoFkdAldDR8hLXc3V9lChoBmgJaA9DCMBZSpbTTHFAlIaUUpRoFU2zAWgWR0CV00B3Roh7dX2UKGgGaAloD0MI7gT7r7PYcUCUhpRSlGgVTWMBaBZHQJXTTDLr5Zd1fZQoaAZoCWgPQwgld9hEJjhwQJSGlFKUaBVNpgFoFkdAldUBujynUHV9lChoBmgJaA9DCO4ljdH6iHFAlIaUUpRoFU0+AWgWR0CV2r5o4+8odX2UKGgGaAloD0MIpYKKqt+RbECUhpRSlGgVTUUBaBZHQJXdS2RaHKx1fZQoaAZoCWgPQwhcVIuIYthsQJSGlFKUaBVN8wFoFkdAld3UHMUypXV9lChoBmgJaA9DCFu1a0KaXHFAlIaUUpRoFU1LAWgWR0CV3vjQzDXOdX2UKGgGaAloD0MIcyuE1VjDakCUhpRSlGgVTb4BaBZHQJXf5VIZqEh1fZQoaAZoCWgPQwgQk3AhjzBvQJSGlFKUaBVNZAFoFkdAleG6gIyCWnV9lChoBmgJaA9DCOxOd5746W5AlIaUUpRoFU3yAWgWR0CV5k4vexfOdX2UKGgGaAloD0MIySHi5tRzcECUhpRSlGgVTbsBaBZHQJXmhTcZccF1fZQoaAZoCWgPQwhe29stSZZjQJSGlFKUaBVN6ANoFkdAlecVtwaR6nV9lChoBmgJaA9DCGRz1TwHpnBAlIaUUpRoFU1oAWgWR0CV6A6GQCCBdX2UKGgGaAloD0MIhuRk4hYvcECUhpRSlGgVTQECaBZHQJXogWM0gr91fZQoaAZoCWgPQwg4L058teluQJSGlFKUaBVN7QFoFkdAlexVtKqXGHV9lChoBmgJaA9DCPRsVn2u8G9AlIaUUpRoFU1CAWgWR0CV7+ckdFOPdX2UKGgGaAloD0MI85GU9LBrb0CUhpRSlGgVTTcCaBZHQJXwRxdY4hl1fZQoaAZoCWgPQwgFNufgGThmQJSGlFKUaBVN6ANoFkdAlfBi75Ec83V9lChoBmgJaA9DCHBBtixfuW9AlIaUUpRoFU3OAWgWR0CV83RdQfp2dX2UKGgGaAloD0MIzczMzIxrckCUhpRSlGgVTY4BaBZHQJX0x9AooeB1fZQoaAZoCWgPQwiL4lXWNk1vQJSGlFKUaBVNswFoFkdAlfTKG+K0lnV9lChoBmgJaA9DCOFCHsENJm5AlIaUUpRoFU04A2gWR0CV9RvKU3XJdX2UKGgGaAloD0MIRNsxdRfjcECUhpRSlGgVTUoBaBZHQJX2803wTdt1fZQoaAZoCWgPQwj9vRQedBpxQJSGlFKUaBVNGgNoFkdAlfeQbhm5D3V9lChoBmgJaA9DCMoWSbvRQWtAlIaUUpRoFU1bAWgWR0CV99tk4FRpdX2UKGgGaAloD0MIOxixTwBAb0CUhpRSlGgVTVkBaBZHQJX4OQ5myxB1fZQoaAZoCWgPQwhOY3stqONxQJSGlFKUaBVN2gFoFkdAlflQE2YOUnV9lChoBmgJaA9DCO0pOSd2vHFAlIaUUpRoFU0xAmgWR0CV+ZQE6kqMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:330587b06b4c4ad4ca68853edb6f1bcf97166f0788b87cb1e539ab01a4abc9e3
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5532039040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f55320390d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5532039160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f55320391f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5532039280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5532039310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f55320393a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5532039430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f55320394c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5532039550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f55320395e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5532039670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f5532032b70>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1674984156789868684,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAByzbzX+3a7g+T+vL9CET2F/rA8YvfxvQAAgD8AAIA/Myl7vNIUtjw+IDm904I9vsj4oLydGRY9AAAAAAAAAACzulc9hR5fP7Mp2LyZpr2+mI1MPYo35jwAAAAAAAAAAODehb52BY4/9ez5vf+MY77qxHq+damLPQAAAAAAAAAA5g1aPVh/Jj/T70y9tGqfvkVf7zwxdhS9AAAAAAAAAABaF5S99gxpuo27TrgeCVSzZ2VGO+iMcjcAAIA/AACAP2ZmAbspBHO6AJPStV8sU7EnnAc7Fe34NAAAgD8AAIA/zSR0vHY3KLxer7u8UKYiPSphiz3/JQS+AACAPwAAgD9tnUc+F7EyP53vkry+A5W+BrLsPZK/l70AAAAAAAAAALMGFb4ctAS8C2/ovGlsQbu3wWg9gfEhPAAAgD8AAIA/mqfZPWYT3j4OJze9tHSGvg8icjz6Plm9AAAAAAAAAAAmqLy9ZmQJP380hz4bFY6+NCaGPahhjD0AAAAAAAAAALPs/T3XLGM+fiYAvoarZr7QQ7U8xhbgPAAAAAAAAAAAZmqkvDa7Xj8vUMc95yeevvbas7uLcjO9AAAAAAAAAAAa41w9oXOFPYvoUL001y2+YBD4u1ZZpTsAAAAAAAAAAPPZwz0SuyI+ylDQvR3uN76Sa9u7TtnIPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbEJaY9DpbUCUhpRSlIwBbJRNTwGMAXSUR0CU+CWRRuTBdX2UKGgGaAloD0MI9tIUAc5BZ0CUhpRSlGgVTegDaBZHQJT4ruKGcnV1fZQoaAZoCWgPQwiemssNBkdiQJSGlFKUaBVN6ANoFkdAlPrqfra/RHV9lChoBmgJaA9DCCycpPnjK2dAlIaUUpRoFU3oA2gWR0CVC7hL5AQhdX2UKGgGaAloD0MIZ195kB42ZUCUhpRSlGgVTegDaBZHQJUPtTAFgUl1fZQoaAZoCWgPQwgmj6flhytoQJSGlFKUaBVN6ANoFkdAlRnwIt16mnV9lChoBmgJaA9DCMozL4fd4m5AlIaUUpRoFU11A2gWR0CVGoFdcB2fdX2UKGgGaAloD0MIGHrE6DlyYkCUhpRSlGgVTegDaBZHQJUbyeOGTLZ1fZQoaAZoCWgPQwgrwHebt6RgQJSGlFKUaBVN6ANoFkdAlTeGqcVgyHV9lChoBmgJaA9DCAoS290Dm2BAlIaUUpRoFU3oA2gWR0CVN9ocrAgxdX2UKGgGaAloD0MIrROX41VfcUCUhpRSlGgVTcsCaBZHQJU4sOjIq9Z1fZQoaAZoCWgPQwhTJF8JJLZmQJSGlFKUaBVN6ANoFkdAlTv/oaDPGHV9lChoBmgJaA9DCE5FKowtUGdAlIaUUpRoFU3oA2gWR0CVPJKZDzAfdX2UKGgGaAloD0MIGRwlr86gZkCUhpRSlGgVTegDaBZHQJU96V2Rq491fZQoaAZoCWgPQwgoRwGiIB9xQJSGlFKUaBVNuwNoFkdAlT4r0voNeHV9lChoBmgJaA9DCPq2YKkuXGJAlIaUUpRoFU3oA2gWR0CVPxVB2OhkdX2UKGgGaAloD0MI0NA/wUWScECUhpRSlGgVTXEDaBZHQJVAWflIVdp1fZQoaAZoCWgPQwiob5nT5b9iQJSGlFKUaBVN6ANoFkdAlUXW38XN1XV9lChoBmgJaA9DCApoImx4hkVAlIaUUpRoFU0sAWgWR0CVR7xUNrj6dX2UKGgGaAloD0MIN6eSAaC4bECUhpRSlGgVTdADaBZHQJVHydwvQF91fZQoaAZoCWgPQwjRrdf0oIptQJSGlFKUaBVN7wFoFkdAlUixfWtlqnV9lChoBmgJaA9DCDY+k/2zFnBAlIaUUpRoFU0xAWgWR0CVS5wDNhVmdX2UKGgGaAloD0MIDtyBOuUycUCUhpRSlGgVTT4BaBZHQJVLuCaqjrR1fZQoaAZoCWgPQwg0ZhL1AvtuQJSGlFKUaBVNUAJoFkdAlUvf60pmVnV9lChoBmgJaA9DCGgibHj6q2VAlIaUUpRoFU3oA2gWR0CVVeTwlSjydX2UKGgGaAloD0MIQPZ698exT0CUhpRSlGgVS9loFkdAlVccDnvDxnV9lChoBmgJaA9DCGSyuP/IJ2NAlIaUUpRoFU3oA2gWR0CVWWg2Ifr9dX2UKGgGaAloD0MIMzUJ3lCmcECUhpRSlGgVTSQCaBZHQJVacVvddmh1fZQoaAZoCWgPQwiHqMKfYdptQJSGlFKUaBVN8QJoFkdAlV8tA1Nxl3V9lChoBmgJaA9DCOKPos5cqm5AlIaUUpRoFU3dAWgWR0CVX2g6U7jldX2UKGgGaAloD0MIpb4s7VTrYECUhpRSlGgVTegDaBZHQJVjEuDjBEd1fZQoaAZoCWgPQwhlprT+Vq5wQJSGlFKUaBVN+gFoFkdAlWQ7s8gZCXV9lChoBmgJaA9DCDJ2wkuwL3BAlIaUUpRoFU0WAmgWR0CVZLo9cKPXdX2UKGgGaAloD0MI8kOlETM1cUCUhpRSlGgVTQEDaBZHQJVoAfnwG4Z1fZQoaAZoCWgPQwgAVHHjlixuQJSGlFKUaBVNPgJoFkdAlWsvAXVLBnV9lChoBmgJaA9DCLCuCtRi9GNAlIaUUpRoFU3oA2gWR0CVfvXWvr4WdX2UKGgGaAloD0MIT64pkNk1cUCUhpRSlGgVTXkBaBZHQJWCEpQUHpt1fZQoaAZoCWgPQwhSmPc401hhQJSGlFKUaBVN6ANoFkdAlYZU6Lfk3nV9lChoBmgJaA9DCIzc09XdZHFAlIaUUpRoFU23A2gWR0CVhpJIUahpdX2UKGgGaAloD0MIa4DSUKODcECUhpRSlGgVTTsCaBZHQJWK4+3Ytg91fZQoaAZoCWgPQwjk3CbcK/8zwJSGlFKUaBVLoWgWR0CVjCCDEm6YdX2UKGgGaAloD0MI8mCL3f4ZcECUhpRSlGgVTS8DaBZHQJWMZ6zE74l1fZQoaAZoCWgPQwivfQG9cC5sQJSGlFKUaBVNdgJoFkdAlY1QQL/jsHV9lChoBmgJaA9DCBb3H5nO0HJAlIaUUpRoFU2QAWgWR0CVjn5gPVd5dX2UKGgGaAloD0MIYYpyaXxSbUCUhpRSlGgVTdoBaBZHQJWSVjlPrOZ1fZQoaAZoCWgPQwg+6q9XWLBkQJSGlFKUaBVN6ANoFkdAlZJYcWCVbHV9lChoBmgJaA9DCG8RGOvbT3FAlIaUUpRoFU0UA2gWR0CVmigntv4udX2UKGgGaAloD0MI4V6Zt2p+bkCUhpRSlGgVTe4BaBZHQJWbfUvwmVt1fZQoaAZoCWgPQwhCmNu93AVKQJSGlFKUaBVNDAFoFkdAlZyHrD63zHV9lChoBmgJaA9DCPfpeMyAcXBAlIaUUpRoFU3hAmgWR0CVoQtEXtSidX2UKGgGaAloD0MI6tDpebdba0CUhpRSlGgVTZkCaBZHQJWiZ3u/k/91fZQoaAZoCWgPQwiILxNFCCZxQJSGlFKUaBVN9QFoFkdAlaTqMzdk8XV9lChoBmgJaA9DCLlvtU7cy25AlIaUUpRoFU2JAmgWR0CVpmHRkVesdX2UKGgGaAloD0MIAtcVM4KacECUhpRSlGgVTdABaBZHQJWm+rWAf+11fZQoaAZoCWgPQwgbSu1FNHZmQJSGlFKUaBVN6ANoFkdAlax1N+LFXXV9lChoBmgJaA9DCD8BFCNLGGZAlIaUUpRoFU3oA2gWR0CVrLC+10DEdX2UKGgGaAloD0MILQjlfRy2bUCUhpRSlGgVTbwBaBZHQJWs0FSsKb91fZQoaAZoCWgPQwhyUMJMW0FvQJSGlFKUaBVNPQFoFkdAlazpxzaK13V9lChoBmgJaA9DCP58W7BUUW1AlIaUUpRoFU0lAmgWR0CVrrBY3eendX2UKGgGaAloD0MI7zob8s/rcECUhpRSlGgVTfUBaBZHQJWvbfHggox1fZQoaAZoCWgPQwh5B3jSwqBsQJSGlFKUaBVNZAFoFkdAlbBdkrf+CXV9lChoBmgJaA9DCDPd66S+m1RAlIaUUpRoFU0AAWgWR0CVs7LMs6JZdX2UKGgGaAloD0MIEFmkiTcPcECUhpRSlGgVTWQBaBZHQJW4PaqS5iF1fZQoaAZoCWgPQwgrajANw+lvQJSGlFKUaBVNHgNoFkdAlcxG+XZ5A3V9lChoBmgJaA9DCGa8rfTazBfAlIaUUpRoFUvxaBZHQJXM7vBrN4Z1fZQoaAZoCWgPQwgFGmzqvH5wQJSGlFKUaBVNvQFoFkdAlc40vkBCD3V9lChoBmgJaA9DCOviNhoAA3BAlIaUUpRoFU24A2gWR0CVzq8K5TZQdX2UKGgGaAloD0MI4lgXt1F8a0CUhpRSlGgVTXYCaBZHQJXPo2wV0tB1fZQoaAZoCWgPQwhl3qrr0AtwQJSGlFKUaBVNeQNoFkdAlc/R7RfF73V9lChoBmgJaA9DCO6TowDRMHBAlIaUUpRoFU1oAWgWR0CV0GbkOqecdX2UKGgGaAloD0MIebEwRE7Wb0CUhpRSlGgVTTgCaBZHQJXQ0R+SbH91fZQoaAZoCWgPQwg5twn3ygFxQJSGlFKUaBVNbQFoFkdAldDR8hLXc3V9lChoBmgJaA9DCMBZSpbTTHFAlIaUUpRoFU2zAWgWR0CV00B3Roh7dX2UKGgGaAloD0MI7gT7r7PYcUCUhpRSlGgVTWMBaBZHQJXTTDLr5Zd1fZQoaAZoCWgPQwgld9hEJjhwQJSGlFKUaBVNpgFoFkdAldUBujynUHV9lChoBmgJaA9DCO4ljdH6iHFAlIaUUpRoFU0+AWgWR0CV2r5o4+8odX2UKGgGaAloD0MIpYKKqt+RbECUhpRSlGgVTUUBaBZHQJXdS2RaHKx1fZQoaAZoCWgPQwhcVIuIYthsQJSGlFKUaBVN8wFoFkdAld3UHMUypXV9lChoBmgJaA9DCFu1a0KaXHFAlIaUUpRoFU1LAWgWR0CV3vjQzDXOdX2UKGgGaAloD0MIcyuE1VjDakCUhpRSlGgVTb4BaBZHQJXf5VIZqEh1fZQoaAZoCWgPQwgQk3AhjzBvQJSGlFKUaBVNZAFoFkdAleG6gIyCWnV9lChoBmgJaA9DCOxOd5746W5AlIaUUpRoFU3yAWgWR0CV5k4vexfOdX2UKGgGaAloD0MIySHi5tRzcECUhpRSlGgVTbsBaBZHQJXmhTcZccF1fZQoaAZoCWgPQwhe29stSZZjQJSGlFKUaBVN6ANoFkdAlecVtwaR6nV9lChoBmgJaA9DCGRz1TwHpnBAlIaUUpRoFU1oAWgWR0CV6A6GQCCBdX2UKGgGaAloD0MIhuRk4hYvcECUhpRSlGgVTQECaBZHQJXogWM0gr91fZQoaAZoCWgPQwg4L058teluQJSGlFKUaBVN7QFoFkdAlexVtKqXGHV9lChoBmgJaA9DCPRsVn2u8G9AlIaUUpRoFU1CAWgWR0CV7+ckdFOPdX2UKGgGaAloD0MI85GU9LBrb0CUhpRSlGgVTTcCaBZHQJXwRxdY4hl1fZQoaAZoCWgPQwgFNufgGThmQJSGlFKUaBVN6ANoFkdAlfBi75Ec83V9lChoBmgJaA9DCHBBtixfuW9AlIaUUpRoFU3OAWgWR0CV83RdQfp2dX2UKGgGaAloD0MIzczMzIxrckCUhpRSlGgVTY4BaBZHQJX0x9AooeB1fZQoaAZoCWgPQwiL4lXWNk1vQJSGlFKUaBVNswFoFkdAlfTKG+K0lnV9lChoBmgJaA9DCOFCHsENJm5AlIaUUpRoFU04A2gWR0CV9RvKU3XJdX2UKGgGaAloD0MIRNsxdRfjcECUhpRSlGgVTUoBaBZHQJX2803wTdt1fZQoaAZoCWgPQwj9vRQedBpxQJSGlFKUaBVNGgNoFkdAlfeQbhm5D3V9lChoBmgJaA9DCMoWSbvRQWtAlIaUUpRoFU1bAWgWR0CV99tk4FRpdX2UKGgGaAloD0MIOxixTwBAb0CUhpRSlGgVTVkBaBZHQJX4OQ5myxB1fZQoaAZoCWgPQwhOY3stqONxQJSGlFKUaBVN2gFoFkdAlflQE2YOUnV9lChoBmgJaA9DCO0pOSd2vHFAlIaUUpRoFU0xAmgWR0CV+ZQE6kqMdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75430abed291c6878a5ed35cf65d29b0d5cc60ed87f7e27ee5748cdf1cdd10d2
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:767867c247015471de302222c598b3695cf54ccd154c763a3402c5f0ef03802b
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 238.9673333468865, "std_reward": 10.099298318855771, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T09:47:56.573789"}