|
import math |
|
import sys |
|
from typing import Iterable |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .utils import ( |
|
MetricLogger, |
|
SmoothedValue, |
|
) |
|
|
|
|
|
def train_one_epoch( |
|
model: torch.nn.Module, |
|
model_dtype: str, |
|
data_loader: Iterable, |
|
optimizer: torch.optim.Optimizer, |
|
optimizer_disc: torch.optim.Optimizer, |
|
device: torch.device, |
|
epoch: int, |
|
loss_scaler, |
|
loss_scaler_disc, |
|
clip_grad: float = 0, |
|
log_writer=None, |
|
lr_scheduler=None, |
|
start_steps=None, |
|
lr_schedule_values=None, |
|
lr_schedule_values_disc=None, |
|
args=None, |
|
print_freq=20, |
|
iters_per_epoch=2000, |
|
): |
|
|
|
|
|
model.train() |
|
metric_logger = MetricLogger(delimiter=" ") |
|
|
|
if optimizer is not None: |
|
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
metric_logger.add_meter('min_lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
|
|
if optimizer_disc is not None: |
|
metric_logger.add_meter('disc_lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
metric_logger.add_meter('disc_min_lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
|
|
header = 'Epoch: [{}]'.format(epoch) |
|
|
|
if model_dtype == 'bf16': |
|
_dtype = torch.bfloat16 |
|
else: |
|
_dtype = torch.float16 |
|
|
|
print("Start training epoch {}, {} iters per inner epoch.".format(epoch, iters_per_epoch)) |
|
|
|
for step in metric_logger.log_every(range(iters_per_epoch), print_freq, header): |
|
if step >= iters_per_epoch: |
|
break |
|
|
|
it = start_steps + step |
|
if lr_schedule_values is not None: |
|
for i, param_group in enumerate(optimizer.param_groups): |
|
if lr_schedule_values is not None: |
|
param_group["lr"] = lr_schedule_values[it] * param_group.get("lr_scale", 1.0) |
|
|
|
if optimizer_disc is not None: |
|
for i, param_group in enumerate(optimizer_disc.param_groups): |
|
if lr_schedule_values_disc is not None: |
|
param_group["lr"] = lr_schedule_values_disc[it] * param_group.get("lr_scale", 1.0) |
|
|
|
samples = next(data_loader) |
|
|
|
samples['video'] = samples['video'].to(device, non_blocking=True) |
|
|
|
with torch.cuda.amp.autocast(enabled=True, dtype=_dtype): |
|
rec_loss, gan_loss, log_loss = model(samples['video'], args.global_step, identifier=samples['identifier']) |
|
|
|
|
|
|
|
if rec_loss is not None: |
|
loss_value = rec_loss.item() |
|
|
|
if not math.isfinite(loss_value): |
|
print("Loss is {}, stopping training".format(loss_value), force=True) |
|
sys.exit(1) |
|
|
|
optimizer.zero_grad() |
|
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order |
|
grad_norm = loss_scaler(rec_loss, optimizer, clip_grad=clip_grad, |
|
parameters=model.module.vae.parameters(), create_graph=is_second_order) |
|
|
|
if "scale" in loss_scaler.state_dict(): |
|
loss_scale_value = loss_scaler.state_dict()["scale"] |
|
else: |
|
loss_scale_value = 1 |
|
|
|
metric_logger.update(vae_loss=loss_value) |
|
metric_logger.update(loss_scale=loss_scale_value) |
|
|
|
|
|
|
|
|
|
if gan_loss is not None: |
|
gan_loss_value = gan_loss.item() |
|
|
|
if not math.isfinite(gan_loss_value): |
|
print("The gan discriminator Loss is {}, stopping training".format(gan_loss_value), force=True) |
|
sys.exit(1) |
|
|
|
optimizer_disc.zero_grad() |
|
is_second_order = hasattr(optimizer_disc, 'is_second_order') and optimizer_disc.is_second_order |
|
disc_grad_norm = loss_scaler_disc(gan_loss, optimizer_disc, clip_grad=clip_grad, |
|
parameters=model.module.loss.discriminator.parameters(), create_graph=is_second_order) |
|
|
|
if "scale" in loss_scaler_disc.state_dict(): |
|
disc_loss_scale_value = loss_scaler_disc.state_dict()["scale"] |
|
else: |
|
disc_loss_scale_value = 1 |
|
|
|
metric_logger.update(disc_loss=gan_loss_value) |
|
metric_logger.update(disc_loss_scale=disc_loss_scale_value) |
|
metric_logger.update(disc_grad_norm=disc_grad_norm) |
|
|
|
min_lr = 10. |
|
max_lr = 0. |
|
for group in optimizer_disc.param_groups: |
|
min_lr = min(min_lr, group["lr"]) |
|
max_lr = max(max_lr, group["lr"]) |
|
|
|
metric_logger.update(disc_lr=max_lr) |
|
metric_logger.update(disc_min_lr=min_lr) |
|
|
|
torch.cuda.synchronize() |
|
new_log_loss = {k.split('/')[-1]:v for k, v in log_loss.items() if k not in ['total_loss']} |
|
metric_logger.update(**new_log_loss) |
|
|
|
if rec_loss is not None: |
|
min_lr = 10. |
|
max_lr = 0. |
|
for group in optimizer.param_groups: |
|
min_lr = min(min_lr, group["lr"]) |
|
max_lr = max(max_lr, group["lr"]) |
|
|
|
metric_logger.update(lr=max_lr) |
|
metric_logger.update(min_lr=min_lr) |
|
weight_decay_value = None |
|
for group in optimizer.param_groups: |
|
if group["weight_decay"] > 0: |
|
weight_decay_value = group["weight_decay"] |
|
metric_logger.update(weight_decay=weight_decay_value) |
|
metric_logger.update(grad_norm=grad_norm) |
|
|
|
if log_writer is not None: |
|
log_writer.update(**new_log_loss, head="train/loss") |
|
log_writer.update(lr=max_lr, head="opt") |
|
log_writer.update(min_lr=min_lr, head="opt") |
|
log_writer.update(weight_decay=weight_decay_value, head="opt") |
|
log_writer.update(grad_norm=grad_norm, head="opt") |
|
|
|
log_writer.set_step() |
|
|
|
if lr_scheduler is not None: |
|
lr_scheduler.step_update(start_steps + step) |
|
|
|
args.global_step = args.global_step + 1 |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|