|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.models.activations import get_activation, FP32SiLU |
|
|
|
def get_timestep_embedding( |
|
timesteps: torch.Tensor, |
|
embedding_dim: int, |
|
flip_sin_to_cos: bool = False, |
|
downscale_freq_shift: float = 1, |
|
scale: float = 1, |
|
max_period: int = 10000, |
|
): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. |
|
|
|
Args |
|
timesteps (torch.Tensor): |
|
a 1-D Tensor of N indices, one per batch element. These may be fractional. |
|
embedding_dim (int): |
|
the dimension of the output. |
|
flip_sin_to_cos (bool): |
|
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False) |
|
downscale_freq_shift (float): |
|
Controls the delta between frequencies between dimensions |
|
scale (float): |
|
Scaling factor applied to the embeddings. |
|
max_period (int): |
|
Controls the maximum frequency of the embeddings |
|
Returns |
|
torch.Tensor: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" |
|
|
|
half_dim = embedding_dim // 2 |
|
exponent = -math.log(max_period) * torch.arange( |
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device |
|
) |
|
exponent = exponent / (half_dim - downscale_freq_shift) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
|
|
emb = scale * emb |
|
|
|
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) |
|
|
|
|
|
if flip_sin_to_cos: |
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) |
|
|
|
|
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
|
|
class Timesteps(nn.Module): |
|
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.flip_sin_to_cos = flip_sin_to_cos |
|
self.downscale_freq_shift = downscale_freq_shift |
|
self.scale = scale |
|
|
|
def forward(self, timesteps): |
|
t_emb = get_timestep_embedding( |
|
timesteps, |
|
self.num_channels, |
|
flip_sin_to_cos=self.flip_sin_to_cos, |
|
downscale_freq_shift=self.downscale_freq_shift, |
|
scale=self.scale, |
|
) |
|
return t_emb |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
time_embed_dim: int, |
|
act_fn: str = "silu", |
|
out_dim: int = None, |
|
post_act_fn: Optional[str] = None, |
|
cond_proj_dim=None, |
|
sample_proj_bias=True, |
|
): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias) |
|
|
|
if cond_proj_dim is not None: |
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) |
|
else: |
|
self.cond_proj = None |
|
|
|
self.act = get_activation(act_fn) |
|
|
|
if out_dim is not None: |
|
time_embed_dim_out = out_dim |
|
else: |
|
time_embed_dim_out = time_embed_dim |
|
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias) |
|
|
|
if post_act_fn is None: |
|
self.post_act = None |
|
else: |
|
self.post_act = get_activation(post_act_fn) |
|
|
|
def forward(self, sample, condition=None): |
|
if condition is not None: |
|
sample = sample + self.cond_proj(condition) |
|
sample = self.linear_1(sample) |
|
|
|
if self.act is not None: |
|
sample = self.act(sample) |
|
|
|
sample = self.linear_2(sample) |
|
|
|
if self.post_act is not None: |
|
sample = self.post_act(sample) |
|
return sample |
|
|
|
|
|
class PixArtAlphaTextProjection(nn.Module): |
|
""" |
|
Projects caption embeddings. Also handles dropout for classifier-free guidance. |
|
|
|
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py |
|
""" |
|
|
|
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"): |
|
super().__init__() |
|
if out_features is None: |
|
out_features = hidden_size |
|
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) |
|
if act_fn == "gelu_tanh": |
|
self.act_1 = nn.GELU(approximate="tanh") |
|
elif act_fn == "silu": |
|
self.act_1 = nn.SiLU() |
|
elif act_fn == "silu_fp32": |
|
self.act_1 = FP32SiLU() |
|
else: |
|
raise ValueError(f"Unknown activation function: {act_fn}") |
|
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True) |
|
|
|
def forward(self, caption): |
|
hidden_states = self.linear_1(caption) |
|
hidden_states = self.act_1(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module): |
|
def __init__(self, embedding_dim, pooled_projection_dim): |
|
super().__init__() |
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") |
|
|
|
def forward(self, timestep, guidance, pooled_projection): |
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) |
|
|
|
guidance_proj = self.time_proj(guidance) |
|
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) |
|
|
|
time_guidance_emb = timesteps_emb + guidance_emb |
|
|
|
pooled_projections = self.text_embedder(pooled_projection) |
|
conditioning = time_guidance_emb + pooled_projections |
|
|
|
return conditioning |
|
|
|
|
|
class CombinedTimestepTextProjEmbeddings(nn.Module): |
|
def __init__(self, embedding_dim, pooled_projection_dim): |
|
super().__init__() |
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") |
|
|
|
def forward(self, timestep, pooled_projection): |
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) |
|
|
|
pooled_projections = self.text_embedder(pooled_projection) |
|
|
|
conditioning = timesteps_emb + pooled_projections |
|
|
|
return conditioning |