ProdicusII commited on
Commit
7edec27
1 Parent(s): 6fc7d66

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -1
README.md CHANGED
@@ -24,10 +24,21 @@ tags:
24
 
25
  ## Model description
26
  Model takes as input two strings. String1 is NER label. String1 must be phrase for entity. String2 is short text where String1 is searched for semantically.
27
- model outputs list of zeros and ones corresponding to the occurance of NER and corresponing to tokens(tokens given by transformer tokenizer) of the Sring2, not to words.
28
 
29
  ## Example of usage
30
 
 
 
 
 
 
 
 
 
 
 
 
31
  ## Code availibility
32
 
33
  Code used for training and testing the model is available at https://github.com/br-ai-ns-institute/Zero-ShotNER
 
24
 
25
  ## Model description
26
  Model takes as input two strings. String1 is NER label. String1 must be phrase for entity. String2 is short text where String1 is searched for semantically.
27
+ model outputs list of zeros and ones corresponding to the occurance of Named Entity and corresponing to the tokens(tokens given by transformer tokenizer) of the Sring2.
28
 
29
  ## Example of usage
30
 
31
+ from transformers import AutoTokenizer
32
+ modelname='./' #modelpath
33
+ tokenizer = AutoTokenizer.from_pretrained(modelname) ## loading the tokenizer of that model
34
+ string1='Drug'
35
+ string2='No recent antibiotics or other nephrotoxins, and no symptoms of UTI with benign UA.'
36
+ encodings = tokenizer(string1,string2, is_split_into_words=False,
37
+ padding=True, truncation=True, add_special_tokens=True, return_offsets_mapping=False,max_length=512,return_tensors='pt')
38
+ from transformers import BertForTokenClassification #AutoModelForPreTraining
39
+ model = BertForTokenClassification.from_pretrained(modelname, num_labels=2)
40
+ prediction_logits=model(**encodings)
41
+
42
  ## Code availibility
43
 
44
  Code used for training and testing the model is available at https://github.com/br-ai-ns-institute/Zero-ShotNER