qwen-360-diffusion / run_qwen_image_int8.py
ProGamerGov's picture
Fix nf4 script and add int8 script
4f9093b verified
from PIL import Image
import torch
import numpy as np
from transformers import Qwen2_5_VLForConditionalGeneration
from diffusers import (
QwenImagePipeline,
QwenImageTransformer2DModel,
QwenImageInpaintPipeline,
)
from optimum.quanto import quantize, qint8, freeze
prompt = (
"equirectangular, a woman and a man sitting at a cafe, the woman has red hair "
"and she's wearing purple sweater with a black scarf and a white hat, the man "
"is sitting on the other side of the table and he's wearing a white shirt with "
"a purple scarf and red hat, both of them are sipping their coffee while in the "
"table there's some cake slices on their respective plates, each with forks and "
"knives at each side."
)
negative_prompt = ""
output_filename = "qwen_int8.png"
width, height = 2048, 1024
true_cfg_scale = 4.0
num_inference_steps = 25
seed = 42
lora_model_id = "ProGamerGov/qwen-360-diffusion"
lora_filename = "qwen-360-diffusion-int8-bf16-v1.safetensors"
# Use the base fp16/bf16 model, not the nf4 variant
model_id = "Qwen/Qwen-Image"
torch_dtype = torch.bfloat16
device = "cuda"
fix_seam = True
inpaint_strength, seam_width = 0.5, 0.10
def shift_equirect(img):
"""Horizontal 50% shift using torch.roll."""
t = torch.from_numpy(np.array(img)).permute(2, 0, 1).float() / 255.0
t = torch.roll(t, shifts=(0, t.shape[2] // 2), dims=(1, 2))
return Image.fromarray((t.permute(1, 2, 0).numpy() * 255).astype(np.uint8))
def create_seam_mask(w, h, frac=0.10):
"""Create vertical seam mask as PIL Image (center seam)."""
mask = torch.zeros((h, w))
seam_w = max(1, int(w * frac))
c = w // 2
mask[:, c - seam_w // 2:c + seam_w // 2] = 1.0
return Image.fromarray((mask.numpy() * 255).astype("uint8"), "L")
def load_pipeline(text_encoder, transformer, mode="t2i"):
pip_class = QwenImagePipeline if mode == "t2i" else QwenImageInpaintPipeline
pipe = pip_class.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
use_safetensors=True,
low_cpu_mem_usage=True,
)
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
# This still works with the quantized transformer
return pipe
def main():
# 1) Load and INT8-quantize transformer on CPU
transformer = QwenImageTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
)
quantize(transformer, weights=qint8)
freeze(transformer)
# 2) Load and INT8-quantize text encoder on CPU
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_id,
subfolder="text_encoder",
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
device_map={"": "cpu"}, # keep it on CPU; offload will move as needed
)
quantize(text_encoder, weights=qint8)
freeze(text_encoder)
# 3) Build T2I pipeline
generator = torch.Generator(device=device).manual_seed(seed)
pipe = load_pipeline(text_encoder, transformer, mode="t2i")
# 4) First pass: base panorama
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
true_cfg_scale=true_cfg_scale,
generator=generator,
).images[0]
image.save(output_filename)
# 5) Optional seam-fix pass using inpainting
if fix_seam:
del pipe
if torch.cuda.is_available():
torch.cuda.empty_cache()
shifted = shift_equirect(image) # roll 50% to expose seam
mask = create_seam_mask(width, height, frac=seam_width)
pipe = load_pipeline(text_encoder, transformer, mode="i2i")
image_fixed = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=shifted,
mask_image=mask,
strength=inpaint_strength,
width=width,
height=height,
num_inference_steps=num_inference_steps,
true_cfg_scale=true_cfg_scale,
generator=generator,
).images[0]
image_fixed = shift_equirect(image_fixed)
image_fixed.save(output_filename.replace(".png", "_seamfix.png"))
if __name__ == "__main__":
main()